Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (7): 1-6    DOI: 10.13523/j.cb.20180701
    
Identification of Protein-protein Interaction of Hepatitis B Virus X Protein and Tab1 in Vivo and in Vitro
Li-li YU,Bo HU,Xue LI,Nai-shuo ZHU()
College of Life Science, State Key Laboratory of Genetic Engineering, Laboratory of Microbial and Molecular Immunology, Fudan University, Shanghai 200438, China
Download: HTML   PDF(621KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

With the help of analysis of mass spectrometry and data analysis according to the preliminary laboratory basic research, Co-IP and GST pull-down methods was used to prove the interaction of HBV X protein with Tab1. In order to study the carcinogenic mechanism of HBx protein, Some experimental evidence for further study of the role of HBx in the carcinogenic mechanism of HBV chronic infection were provided. pGEX-2TK-GST-HBx plasmid was successfully constructed, GST-HBx fusion protein was induced and incubated with GST-beads. pcDNA3.1/myc-His (-) B-Tab1 plasmid was constructed,then was transfected 293T cells to express Myc-Tab1. Finally the interaction of GST-HBx and Myc-Tab1 was verified in GST pull-down test. Moreover, the eukaryotic expression plasmids including pcDNA3.1/myc-His (-) B-Tab1 and pcDNA3.1-3×flag-HBx were successfully constructed, then were co-transfected into human embryonic kideny 293T cells and HepG2 cells to express fusion protein, further Co-IP test was demonstrated that the anti-Myc antibody could precipitate HBx from the cell lysate, and confirmed their intracellular interaction in two human cell lines. In conclusion, all results show that HBx and Tab1 could interact in vitro and in vivo, also established foundation to reveal the function and mechanism of HBV X protein.



Key wordsHBV X protein      Tab1      Co-IP      GST pull-down      Interaction     
Received: 27 February 2018      Published: 13 August 2018
ZTFLH:  Q816  
Corresponding Authors: Nai-shuo ZHU     E-mail: nzhu@fudan.edu.cn
Cite this article:

Li-li YU,Bo HU,Xue LI,Nai-shuo ZHU. Identification of Protein-protein Interaction of Hepatitis B Virus X Protein and Tab1 in Vivo and in Vitro. China Biotechnology, 2018, 38(7): 1-6.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180701     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I7/1

Fig.1 PCR products of human Tab1 M1:Trans 15 000 DNA marker,Tab1 of PCR;M2: Trans 2 000 DNA marker
Fig.2 Restriction enzyme digestion and colony PCR identification of pcDNA3.1/myc-His(-)B-Tab1(a)Double enzyme digestion identification M1: Trans 15 000 DNA marker; 1:Empty vector;2: Double digestion products;M2:Trans 2 000 DNA marker (b)Colony PCR identification M1:Trans 15 000 DNA marker; Clone 1-5: Selecting five monoclonal colonies;M2:Trans 2 000 DNA marker
Fig.3 Expression identification of pcDNA3.1/myc-His(-)B-Tab1
Fig.4 PCR products of HBxM1:Trans 2 000 DNA marker; HBx: Products of PCR
Fig.5 Restriction enzyme digestion and colony PCR identification of pGEX-2TK-GST-HBx (a)Double enzyme digestion identification M1: Trans 15 000 DNA marker; 1:Empty vector;2: Double digestion products;M2:Trans 2 000 DNA marker (b)Colony PCR identification M1: Trans 15 000 DNA marker; Clone 1-6: Selecting five monoclonal colonies;M2:Trans 2 000 DNA marker
Fig.6 IPTG Induction of GST-HBx fusion protein expressionM:Protein marker; 1-3:IPTG induction of GST-HBx; 4-6: IPTG induction of GST
Fig.7 SDS-PAGE test of GST-HBx fusion protein purification by Agarose BeadsM:Protein marker; 1: GST-HBx; 2: GST
Fig.8 Interaction between Tab1 and HBx in 293T cells by Co-IP
Fig.9 Interaction between Tab1 and HBx in HepG2 cells by Co-IP
Fig.10 Interaction between Tab1 and HBx in vitro
[1]   Szmuness W . Hepatocellular carcinoma and the hepatitis B virus: evidence for a causal association. Prog Med Virol, 1978,24:40-69.
[2]   Cromlish J A . Hepatitis B virus induced hepatocellular carcinoma:possible roles for HBx. Trends in Microbiology, 1996,4(7):270-274.
doi: 10.1016/0966-842X(96)10046-9 pmid: 8829335
[3]   Levrero M, Zucman-Rossi J . Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol, 2016,64(1 Suppl):S84-S101.
doi: 10.1016/j.jhep.2016.02.021 pmid: 27084040
[4]   Tian Y, Yang W, Song J, et al. Hepatitis B virus X protein-induced aberrant epigenetic modifications contributing to human hepatocellular carcinoma pathogenesis. Mol Cell Biol, 2013,33(15):2810-2816.
doi: 10.1128/MCB.00205-13
[5]   Pogribny I P, Rusyn I . Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. Cancer Lett, 2014,342(2):223-230.
doi: 10.1016/j.canlet.2012.01.038
[6]   Gong D Y, Chen E Q, Huang F J, et al. Role and functional domain of hepatitis B virus X protein in regulating HBV transcription and replication in vitro and in vivo. Viruses, 2013,5(5):1261-1271.
doi: 10.3390/v5051261
[7]   Yu F L, Liu H J, Lee J W, et al. Hepatitis B virus X protein promotes cell migration by inducing matrix metalloproteinase-3. J Hepatol, 2005,42(4):520-527.
doi: 10.1016/j.jhep.2004.11.031 pmid: 15763339
[8]   Wang Y, Cui F, Lv Y, et al. HBs Ag and HBx knocked into the p21 locus causes hepatocellular carcinoma in mice. Hepatology, 2004,39(2):318-324.
doi: 10.1002/hep.20076 pmid: 14767984
[9]   Bouchard M J, Schneider R J . The enigmatic X gene of hepatitis B virus. J Virol, 2004,78(23):12725-12734.
doi: 10.1128/JVI.78.23.12725-12734.2004 pmid: 15542625
[10]   Toh S T, Jin Y, Liu L, et al. Deep sequencing of the hepatitis B virus in hepatocellular carcinoma patients reveals enriched integration events, structural alterations and sequence variations. Carcinogenesis, 2013,34(4):787-798.
doi: 10.1093/carcin/bgs406
[11]   Schaeffer H J, Weber M J . Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol, 1999,19(4):2435-2444.
doi: 10.1128/MCB.19.4.2435
[12]   Shibuya H, Yamaguchi K, Shirakabe K, et al. Tab1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science, 1996,272(5265):1179-1182.
doi: 10.1126/science.272.5265.1179 pmid: 8638164
[13]   Hirata Y, Takahashi M, Morishita T, et al. Post-translational modifications of the TAK1-TAB complex. Int J Mol Sci, 2017,18(1):205.
doi: 10.3390/ijms18010205 pmid: 28106845
[14]   Brechot C, Thiers V, Kremsdorf D . Persistent hepatitis B virus infection in subjects without hepatitis B surface antigen: clinically significant or purely “occult”. Hepatology, 2001,34(1):194-203.
[15]   Klein N P, Bouchard M J, Wang L H . Src kinases involved in hepatitis B virus replication. EMBO J, 1999,18(18):5019-5027.
doi: 10.1093/emboj/18.18.5019
[16]   Yen T S . Hepadnaviral X protein: review of recent progress. J Biomed Sci, 1996,3(1):20-30.
doi: 10.1007/BF02253575 pmid: 11725079
[17]   Bouchard M J, Schneider R J . The enigmatic X gene of hepatitis B virus. Journal of Virology, 2004,78(23):12725-12734.
doi: 10.1128/JVI.78.23.12725-12734.2004 pmid: 15542625
[18]   Zhai B, Sun X Y . Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma. World J Hepatol, 2013,5(7):345-352.
doi: 10.4254/wjh.v5.i7.345
[19]   Shibuya H, Yamaguchi K, Shirakabe K, et al. Tab1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science, 1996,272(5265):1179-1182.
doi: 10.1126/science.272.5265.1179 pmid: 8638164
[20]   Kishimoto K . TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation Loop. J Biol Chem, 2000,275(10):7359-7364.
doi: 10.1074/jbc.275.10.7359
[1] CHU Yu-qi,LU Fei-fei,LIU Yang,HE Fang,WANG Da-zhuang,CHEN Li-jiang. Interaction between Protein Corona and Nanoparticles[J]. China Biotechnology, 2020, 40(4): 78-83.
[2] LI Wen,CHEN Jie,HU Wei-nan,QI Ya-yun,FU Yi-hong,LIU Jia-min,WANG Zhen-chao,OUYANG Gui-ping. Research Advances in the Study of EGFR Mutations Resistance and Its Small Molecule Inhibitors[J]. China Biotechnology, 2019, 39(10): 97-104.
[3] Yue ZHAO,Hao WU,Jian-jun QIAO. Research on the Regulatory Mechanisms of Bacterial Cell Wall Growth[J]. China Biotechnology, 2018, 38(8): 92-99.
[4] MENG Kun, HE Qing-yu, WANG Tong, LU Shao-hua. The Study of Protein-protein Interactions Using a Flow Cytometry-based FRET Technology in Living Cells[J]. China Biotechnology, 2017, 37(5): 45-51.
[5] WU Qin, HU Die, LI Xue-qing, YUAN Feng-jiao, LI Jian-fang, WU Min-chen. Site-directed Mutagenesis of Y13F to Improve the Thermotolerance of Mesophilic Xylanase from Aspergillus oryzae[J]. China Biotechnology, 2016, 36(12): 36-41.
[6] ZHANG Chen-chen, MENG Zhi-zhong, LU Yuan-fang, CHEN Xin, LI Shan. Homology Modeling and Structure Analysis of SoxYZ: A Carrier of Sulfur Compounds from Thiobacillus denitrificans[J]. China Biotechnology, 2015, 35(7): 68-75.
[7] LIU Dong-mei, SUN Jia-nan, ZOU Jia-ning, LIU Ming-wei, SUN Lu, LIU Qiong-ming. Screening Interacting Proteins for BAG Domains of BAG Family Proteins by GST pull-down Coupled with LC-MS/MS[J]. China Biotechnology, 2015, 35(4): 1-10.
[8] HUANG Xin-yuan, FAN Hong-bo, ZOU Li-ping. Progress in Protein Fragment Complementation Assay[J]. China Biotechnology, 2013, 33(11): 99-105.
[9] SHEN Zi-yue, LV Zhe, QIN Zong-hua, LI Ren-qiang. Applying Pull-down Technique to Study Interactional Proteins with Shrimp Allergen[J]. China Biotechnology, 2012, 32(11): 81-85.
[10] SHEN Zi-yue, LV Zhe, QIN Zong-hua, LI Ren-qiang. Applying Pull-down Technique to Study Interactional Proteins with Shrimp Allergen[J]. China Biotechnology, 2012, 32(11): 81-85.
[11] GUO Fen, LIN Pi-rong, LI Yue-qin, SU Xian-li, WANG Ding-ding, ZHOU Tian-hong. Interaction among BRPF1, Its Novel Transcript BRPF2 and RHOX5 Protein[J]. China Biotechnology, 2012, 32(09): 15-21.
[12] CHEN Si-qun, SUN Zi-cai, CHEN Jian-jun, CHEN Xiao-hui. Applications of the Carbohydrate-Protein Interaction on Immobilization of Enzyme and on Recognition and Separation of Proteins[J]. China Biotechnology, 2012, 32(04): 83-88.
[13] WU Li, YANG Cheng-hong, DENG Si-si, ZHOU Yu-bo, QIAN Min, ZANG Yi. Screening of AMPK Interacted Proteins by Yeast Two Hybrid System[J]. China Biotechnology, 2012, 32(02): 1-7.
[14] LI You, ZHANG Yan, SU Hai-jia, LUO Jian, BAI Qian, MA Guang-hui, SU Zhi-guo. Purification of Recombinant Human Lactoferrin Expressed in A Cattle Mammary Bioreactor[J]. China Biotechnology, 2011, 31(8): 66-72.
[15] LI Yu-ye, LI Xing-xing, SUN Shuang-shuang, ZOU Zheng-yu, ZHANG Yun-yuan, DUAN Liang, YE Li-wei, WU Rui, YANG Xia, HE Tong-chuan, ZHOU Lan. Effects and Possible Mechanism of Protein S100A6 on β-catenin[J]. China Biotechnology, 2011, 31(11): 18-23.