Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (06): 47-54    DOI: 10.13523/j.cb.20140607
    
A Preliminary Study of exoD Gene Relating Exopolysaccharides Secretion in Sinorhizobium fredii WGF03
MA Ting-ting1,2, ZHANG Jian1,2, SU Yue-ping1,2, SONG Zhang-yang1,2, TANG Xian-lai4, SHEN Pei-hong1, WU Bo3
1. College of Life Science and Technology of Guangxi University, Nanning 530005, China;
2. The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, Nanning 530005, China;
3. State Key Laboratory for Conservation and Utilization of Agricultural Bioresources in the Subtropics, Nanning 530005, China;
4. The Science and Technology Department of Guangxi, Nanning 530012, China
Download: HTML   PDF(982KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An extracellular polysaccharide secretion related gene exoD was cloned from genome of S.fredii WGF03 and the influence of genes on extracellular polysaccharide synthesis as well as nodulation,nitrogen fixation with host plant was investigated. ΔexoD mutant was constructed through homologous double-crossover using suicide plasmid pk18mobsacB as a vector. Compared with the wile type strain, the mutant strain produced less exopolysaccharides (EPS) on YMA medium plate and the motility was decreased.Nothing changes in the growth situation on the medium containing less than 350 mmol/L of NaCl. The plant test showed that the number of nodules was more, but small, varying shapes, and nitrogen-fixing enzyme activity was also significantly decreased after inoculation mutant strain. This demonstrated that exoD gene affect EPS synthesis in S.fredii WGF03, and involve in nodulation and nitrogenase activity.



Key wordsS. fredii WGF03      EPS      Deletion mutation      exoD      Plant tests     
Received: 27 March 2014      Published: 25 June 2014
ZTFLH:  Q789  
Cite this article:

MA Ting-ting, ZHANG Jian, SU Yue-ping, SONG Zhang-yang, TANG Xian-lai, SHEN Pei-hong, WU Bo. A Preliminary Study of exoD Gene Relating Exopolysaccharides Secretion in Sinorhizobium fredii WGF03. China Biotechnology, 2014, 34(06): 47-54.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140607     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I06/47


[1] 陈文新, 汪恩涛. 中国根瘤菌. 北京:科学出版社,2011.29-31. Chen W X,Wang N T. China Rhizobium. Beijing: Science Press,2011.29-31.

[2] Downie,J A. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev,2010,34:150-170.

[3] Alisa P L,Sharon R L. Exopolysaccharides from Sinorhizobium meliloti can protect against H2O2-dependent damage. J Bacteriol,2013, 195(23):5362-5369.

[4] Quelas J I,López-García S L, Casabuono A,et al. Effects of N-starvation and C-source on Bradyrhizobium japonicum exopolysaccharide production and composition and bacterial infectivity to soybean roots. Arch Microbiol,2006,186:119-128.

[5] Rinaudi L V, Giordano W. An integrated view of biofilm formation in rhizobia. FEMS Microbiol Lett,2010,30:1-11.

[6] Amelia D T, Bronwyn R H, Travis W D,et al. Agrobacterium tumefaciens ExoR represses succinoglycan biosynthesis and is required for biofilm formation and motility. Microbiol,2010, 156(9):2670-2681.

[7] Fraysse N, Couderc F, Poinsot V. Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. Eur J Biochem,2003,270:1365-1380.

[8] Laus M C, Van B A, Kijne J W. Role of cellulose fibrils and exopolysaccharides of Rhizobium leguminosarum in attachment to and infection of Vicia sativa root hairs. Mol Plant Microbe Interact, 2005, 18:533-538.

[9] Monika J. Environmental signals and regulatory pathways that influence exopolysaccharide production in Rhizobia. J Mo Sci, 2011,12:7898-7933.

[10] Anna S,Monika J, Magorzata M,et al. Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microbial Cell Factories, 2006, 5:7.

[11] Yao S Y,Luo L, Har K J,et al. Sinorhizobium meliloti ExoR and ExoS proteins regulate both succinoglycan and flagellum production. J Bacteriol,2004,186:6042-6049.

[12] Zhan H, Leigh J A. Two genes that regulate exopolysaccharide production in Rhizobium meliloti. J Bacteriol,1990,172:5254-5259.

[13] Becker A, Küster H, Niehaus K,et al. Extension of the Rhizobium meliloti succinoglycan biosynthesis gene cluster: Identification of the exsA gene encoding an ABC transporter protein, and the exsB gene which probably codes for a regulator of succinoglycan biosynthesis. Mol Gen Genet,1995,249:487-497.

[14] Keller M,Roxlau A,Wenig W M, et al. Molecular analysis of the Rhizobium meliloti mucR gene regulating the biosynthesis of the exopolysaccharides succinoglycan and galactoglucan. Mol Plant Microbe Interact. 1995, 8, 267-277.

[15] Hoang H H,Becker A,Gonzalez J E. The LuxR homolog ExpR, in combination with the Sinquorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. J Bacteriol,2004, 186:5460-5472.

[16] Dusha I, Olah B, Szegletes Z,et al. syrM is involved in the determination of the amount and ratio of the two forms of the acidic exopolysaccharide EPS I in Rhizobium meliloti. Mol Plant Microbe Interact, 1999, 12:755-765.

[17] Bahlawane C,Baumgarth B, Serrania J,et al. Fine-tuning of galactoglucan biosynthesis in Sinorhizobium meliloti by differential WggR (ExpG)-, PhoB-, and MucR-dependent regulation of two promoters. J Bacteriol,2008,190: 3456-3466.

[18] Reed J W,Walker G C. The exoD gene of Rhizobium meliloti encodes a novel function needed for alfalfa nodule invasion. J Bacteriol,1991,173:664-677.

[19] Reed J W,Walker G C. Acidic conditions permit effective nodulation of alfalfa by invasion-deficient Rhizobium meliloti exoD mutants. Genes Dev,1991,5:2274-2287.

[20] Helinski D R, Figurski D. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA,1979,76:1648-1652.

[21] Tang J L,Gough C L,Barber C E,et al. Molecular cloning of protease gene(s) from Xanthomonas campestris pv. campestris:Expression in Escherichia coli and role in pathogenicity. Mol Gen Genet,1987,210:443-448.

[22] 罗贤安,凉安千.生物固氮研究中乙炔还原法的应用. 微生物学通报,1979,2:37-40. Luo X A,Liang A Q. The application of acetylene reduction method in biological nitrogen-fixing research. Microbiology,1979,2:37-40.

[23] Lai H C,Soo P C, Wei J R,et al. The RssAB two-component signal transduction system in Serratia marcescens regulates swarming motility and cell envelope architecture in response to exogenous saturated fatty acids. J Bacteriology,2005,187(10):3407-3414.

[24] Derek H W,Esther J C,Robeert F F. ExoR is genetically coupled to the ExoS-ChvI two-component system and located in the periplasm of Sinorhizobium meliloti. Mol Microbiol,2007,64(3):647-664.

[25] 罗利,刘芳华,朱家壁,等. 苜蓿中华根瘤菌(Sinorhizobium meliloti)LuxR家族转录因子ExpR调节motC操纵子的表达. 微生物学报,2006,46(3):474-477. Luo L,Liu F H,Zhu J B,et al. A LuxR family regulator,ExpR regulates the expression of motC operon from Sinorhizobium meliloti. Acta Microbiolgica Sinica,2006,46(3):474-477.

[26] Crespo-Rivas J C,Margaret I,Hidalgo A,et al.Sinorhizobium fredii HH103cgs mutants are unable to nodulate determinate and indeterminate-nodule forming legumes and overproduce an altered EPS. Mol Plant-Microbe Interact,2009,22:575-588.

[27] Isabel M,Juan C,Crespo R,et al. Sinorhizobium fredii HH103 rkp-3Genes are required for K-antigen polysaccharide,biosynthesis,affect lipopolysaccharide structure and are essential for infection of legumes forming determinate nodules. Molecular Plant-Mircrobe Interactions,2012,25(6):825-838.

[28] Margaret I,Lucas M M,Acosta J S,et al. The Sinorhizobium fredii HH103 lipopolysaccharide is not only relevant at early soybean nodulation stages but also for symbiosome stability in mature nodules. PLoSONE,2013,8(10):e74717.doi:10.137/journal.pone.0074717.

[29] 方宣钧,尤崇杓,固氮菌酸性胞外多糖生物合成的基因调控.农业生物技术学报,1995,3(1):21-27. Fang X J,You C B. Gene regulation of biosynthesis of acidic exoploysaccharides in diazotrophs. J Agric Biotechnol,1995,3(1):21-27.

[30] Leigh J A,Lee C C. Characterization of polysaccharides of Rhizobium meliloti exo mutants that form ineffective nodules. J Bacteriol,1988,170(8):3327-3332.

[31] Unni S,Rao K K. Protein and lipopolysaccharide profiles of a salt-sensitive Rhizobium sp. and its exopolysaccharide-deficient mutant. Soil Biol Biochem,2001,33(1):111-115.

[32] Kan F L,Chen Z Y,Wang E T, et al. Characterization of symbiotic and endophytic bacteria isolated from root nodules of herbaceous legumes grown in Qinghai-Tibet plateau and in other zones of China. Archives of Microbiology, 2007, 188(2):103-115.

[33] Esther J C,Erich A S,Sharon R L. The periplasmic regulator ExoR inhibits ExoS/ChvI two-component signalling in Sinorhizobium meliloti. Mol Microbiol,2008,69(5):1290-1303.

[34] 王正荣,生吉萍,申琳. 细菌胞外多糖的生物合成与基因控制. 生物技术通报,2010,11:48-55. Wang Z R,Sheng J P,Shen L. Biosynthesis of bacterial exopolysaccharides and gene cluster. Biotech Bulletin,2010,11:48-55.

[1] GUO Sheng-nan, LI Xin-xiao, WANG Feng, LIU Kun-mei, DING Na, HU Qi-kuan, SUN Tao. Establishment and Identification of the Neocortex and Hippocampus GABRG2 Knockout Mice and Its Preliminary Study in Generalized Epilepsy with Febrile Seizures Plus[J]. China Biotechnology, 2020, 40(3): 9-20.
[2] YANG Huan-huan, TIAN Hai-shan, LI Xiao-kun, JIANG Chao. The Development of the Study on Fibroblast Growth Factor 22[J]. China Biotechnology, 2017, 37(5): 113-117.
[3] SUN Dan, ZHANG Min, XIE Chang-rui, GUO Xiao-wei, XU He-han, GAO Hong-tao, LI Xiao-wei, SUN Tian-xu, LI Hai-yan. Establishment of Genetic Transformation System of Cordyceps militaris using PEG Mediated Method[J]. China Biotechnology, 2017, 37(4): 76-82.
[4] ZHAO Yan, HAO Yan-ni, LIU Nan-jing, LI Ting, WU Xiao-hou, LUO Chun-li. Silence of PLCε Induced by miR-145 Inhibits EMT and Metastasis in Bladder Cancer[J]. China Biotechnology, 2017, 37(3): 27-36.
[5] LUO Feng-xue, LI Fo-sheng, YAO Min, XU Ying. The Cloning and Transient Expression Analysis of Promoter of OsHAK26 from Oryza sativa[J]. China Biotechnology, 2017, 37(2): 33-39.
[6] CHEN Dan, GUO Yu-zheng, BAN Jing-yang, LI Lu, WANG Wei-long, LI Ding-feng, LIU Yong. Development of Recombinant Human PepsinogenⅡ Calibrators Derived from Hansenula polymorpha[J]. China Biotechnology, 2016, 36(9): 38-46.
[7] CHENG Cai-hong, DU Ting, CHEN Ke-quan, LI Yan. Recombinant Expression of ε-Lysine Acylase from Streptomyces mobaraensis for Synthesis of Nε-lauroyl-L-lysine[J]. China Biotechnology, 2016, 36(2): 62-67.
[8] SHEN Jun-liang, JIN Hua-yan, GAO Ya, ZHA Mei-ling, FU Ming-jia. Two-step Fermentation of Carotenoid by Blue Light Induction in Cordyceps militaris L.[J]. China Biotechnology, 2013, 33(2): 83-87.
[9] MA Jin-wei, CHENG Hong, CHU Xue-zhe, LI Xian-zhong, HU Yan-hong, YU Zhi-ai, LIN Feng, HE Li-hua, BAI Xian-hong, HU Pin-liang. Development of Chimera Protein: sFcεRIα/mIg(IgG2)[J]. China Biotechnology, 2010, 30(10): 17-21.
[10] SONG Min, LIU Li-Jun, SU Ying-Yi, ZHANG Dui. Analysis of Patent Protection of Glyphosate-tolerance EPSPS Gene[J]. China Biotechnology, 2010, 30(02): 147-152.
[11] . Detection and partial characterization of γ-glutamyltranspeptidase from Cordyceps sinensis mycelia[J]. China Biotechnology, 2008, 28(10): 100-105.
[12] LIU dong-jun . Research on the mechanism of the cotton Y18 cell line resistant to herbicide glyphosate[J]. China Biotechnology, 2008, 28(10): 55-59.
[13] . Natural Anti-infectious Molecule: Bactericidal/ permeability- increasing Protein[J]. China Biotechnology, 2006, 26(07): 94-98.
[14] . Studies on the Effects of Ultrasound on Pepsin,Trypsin and Catalase[J]. China Biotechnology, 2006, 26(05): 81-84.