Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (03): 47-52    DOI:
    
Effects of DKPs on Gene Expression of the Antibacterial Substances in Bacillus amyloliquefaciens Q-426
XIONG Wen1, YANG Xue-min1, WANG Jian-hua3, QUAN Chun-shan1,2, FAN Sheng-di1,2
1. College of Life Science, Dalian Nationalities University, Dalian 116600, China;
2. Key Laboratory of State Ethnic Affairs Commission and Ministry of Education, Dalian 116600, China;
3. Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
Download: HTML   PDF(665KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Bacillus amyloliquefaciens Q-426 could produce varieties of antifungal lipopeptides during its stationary growth process, including bacillomycin D, fengycin A and B. Effects of diketopiperazines (DKPs) as signal molecules of quorum sensing (QS) on the biosynthesis of above antifungal compounds were studied through real time fluorescent quantitative polymerase chain reaction (Real-time Q-PCR). Methods: DKPs at a final concentration of 5 mg/l were added to the culture broth of strain Q-426 which was incubated at 30℃ for 12 h. After continuing cultivation for 48 h, quantitative analysis of mRNA expression levels was carried out by Real-time Q-PCR. Result: DKPs could inhibit the expression of some genes related with the biosynthesis of antifungal lipopeptides.



Key wordsBacillus amyloliquefaciens Q-426      DKPs      Antibacterial activity     
Received: 28 November 2011      Published: 25 March 2012
ZTFLH:  Q93  
Cite this article:

XIONG Wen, YANG Xue-min, WANG Jian-hua, QUAN Chun-shan, FAN Sheng-di. Effects of DKPs on Gene Expression of the Antibacterial Substances in Bacillus amyloliquefaciens Q-426. China Biotechnology, 2012, 32(03): 47-52.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I03/47


[1] Bott R, Ultsch M, Kossiakoff A, et al. The three-dimensional structure of Bacillus amyloliquefaciens subtilisin at 1.8Å and an analysis of the structural consequences of peroxide inactivation. J Biol Chem, 1988, 263(16): 7895-7906.

[2] Chen X H, Koumoutsi A, Scholz R, et al. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotech, 2009, 140(1-2):27-37.

[3] Kozlovsky A, Vinokurova N G, Adanin V M, et al.Piscarinines, new polycyclic diketopiperazine alkaloids from Penicillium piscarium VKM F-691. Nat Prod Lett, 2000, 14 (5): 333-340.

[4] Yoshio H, Sumie O, Koji T, et al. Total synthesis of anti-microtubule diketopiperazine derivatives: phenylahistin and aurantiamine. J Org Chem, 2000, 65(24): 8402-8405.

[5] Holden M T G, Chhabra S R, Denys R, et al. Quorum sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Mol Microbiol, 1999, 33(6): 1254-1266.

[6] Degrassi G, Aguilar C, Bosco M, et al. Plant growth-promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: cross-talk with quorum sensing bacteria sensors. Current Microbiology, 2002, 45(4): 250-254.

[7] Wang J H, Quan C S, Qi X H, et al. Determination of diketopiperazines of Burkholderia cepacia CF-66 by gas chromatography-mass spectrometry. Anal Bioanal Chem, 2010, 396(5): 1773-1779.

[8] Girard B M, May V, Bora S H, et al. Regulation of neurotrophic peptide expression in sympathetic neurons: quantitative analysis using radioimmunoassay and real-time quantitative polymerase chain reaction. Regul Peptides, 2002, 109(1-3): 89-101.

[9] Alexandra G, Gilles F, Christiane C, et al. Tracking T cell clonotypes in complex T lymphocyte populations by real-time quantitative PCR using fluorogenic complementarity-determining region-3-specific probes. Journal of Immunological Methods, 2002, 270(2): 269-280.

[10] Khmel I A, Belik A, Zaitseva Y, et al. Quorum sensing and communication in bacteria. Moscow University Biological Sciences Bulletin, 2008, 63(1): 25-31.

[11] Nealson K H, Hastings J W. Bacterial bioluminescence: its control and ecological significance. Microbiol Rev, 1979, 43(4): 496-518.

[12] Wisniewski-Dyé F, Jones J, Chhabra S R, et al. raiIR genes are part of a quorum-sensing network controlled by CinI and CinR in Rhizobium leguminosarum. J Bacteriol, 2002, 184(6): 1957-1606.

[13] Winson M K, Camara M, Latifi A, et al. Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc Natl Acad Sci USA, 1995, 92(20): 9427-9431.

[14] Bainton N J, Bycroft B W, Chhabra S R, et al. A general role for the lux autoinducer in bacterial cell signaling control of antibiotic biosynthesis in Erwinia. Gene, 1992, 116(1): 87-91.

[15] Huber B, Riedel K, Hentzer M, et al. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology, 2001, 147(9): 2517-2528.

[16] Elvers K T, Park S F. Quorum sensing in Campylobacter jejuni: detection of a luxS encoded signaling molecule. Microbiology, 2002, 148(5): 1475-1481.

[17] Fuqua W C, Winans S C. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumour metabolite. J Bacteriol, 1994, 176(10): 2796-2806.

[1] Jia-ao GE,Chang LIU,Jian-gang GONG,Yan-qin LIU. Research Progress of Antibacterial Cyclopeptides[J]. China Biotechnology, 2018, 38(11): 76-83.
[2] LIU Xiao-ming, JIANG Ning, ZHANG Ai-zhong, CAI Peng. Expression of Hybrid Antimicrobial Peptides in Pichia Yeast and Identification of Its Biological Activity[J]. China Biotechnology, 2016, 36(2): 81-89.
[3] WU Chun-xu, LU Xue-mei, JIN Xiao-bao, ZHU Jia-yong. Advances in Research on Molecular Design of Cecropin-like Peptides[J]. China Biotechnology, 2016, 36(2): 96-100.
[4] LI Jian-bo, JIANG Ming-feng, WANG Yong. Tibetan Sheep Mammary Gland Lysozyme: Molecular Cloning, Prokaryotic Expression and Its Antibacterial Activity[J]. China Biotechnology, 2013, 33(8): 38-44.
[5] MING Fei-ping, YANG Jun, ZHU Jin-mei, KUANG Zhe-shi, LI Hua-zhou, XIA Feng-geng, YE Ming-qiang, WANG Hou-guang, ZHAO Xiang-jie, HUANG Zhi-feng, MA Miao-peng, SHI Ju-qing, CAI Hai-ming, ZHANG Ling-hua. Modification of 5’UTR Sequences of pPIC9K Increases Expression of Antimicrobial Peptide PR39[J]. China Biotechnology, 2013, 33(12): 86-91.
[6] ZHOU Guang-qi, MA Peng-bo, LIU Qiao, QUAN Chun-shan, FAN Sheng-di. Optimization of Culture Medium and Prediction of Antibacterial Activity by Bacillus Amyloliquefaciens Q-426 Fermentation[J]. China Biotechnology, 2013, 33(11): 21-26.
[7] ZHAO Peng-chao, QUAN Chun-shan, JIN Li-ming, WANG Li-na, FAN Shen-di. Effects of Different Nitrogen and Carbon Sources on the Production of Antifungal Lipopeptides from Bacillus amyloliquefaciens Q-426[J]. China Biotechnology, 2012, 32(10): 50-56.
[8] SHU Mei, XU Yang, XU Xi, TU Zhui. Expression and Activity Analysis of Two Anti-microbial Peptides from Aquatic Animals[J]. China Biotechnology, 2011, 31(02): 56-61.