Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (9): 124-131    DOI:
    
The Advancement of CO2 Biological Trapping and Wastewater Ecological Recovery Based on Microalgae Cultivation.
TANG Xiao-hong1, CHANG Ying2, HUANG He1,3, GAO Zhen1, YIN Ji-long1, JI Xiao-jun1
1. College of Biotechnology and Pharmaceutical Engineering, Nanjing 210009, China;
2. The Administrative Center for China's Agenda 21, Beijing 100036, China;
3. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 210009, China
Download: HTML   PDF(672KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Greenhouse effect, water resource crisis and energy crisis are the three major challenges in front of human beings in the 21st century. Microalgae, as a kind of aquatic plant, have become a hot global research topic in the field of CO2 emission reduction, wastewater ecological recovery and biological energy. The application research progress in using microalgae in the field of CO2 biological trapping and wastewater ecological recovery is summarized. Based on microalgal biological processes research concentrating on optimum design of one unit and lacking of fully cognition toward the importance of interconnection, The conception of coupling these factors are putted forward. The new biofuel strategy is biodiesel production of high oil content microalgae coupled with wastewater treatment and flue gas, then algal residue and coal both vaporize. Efficient global optimization and environmental comprehensive control is important. To develop low carbon economy is an effective way in China, The future research emphasis and prospect of microalgae interconnection are also mentioned.



Key wordsCO2 biological trapping      Interconnection      Microalgae      Wastewater ecological recovery     
Received: 24 February 2011      Published: 25 September 2011
ZTFLH:  Q715  
Cite this article:

TANG Xiao-hong, CHANG Ying, HUANG He, GAO Zhen, YIN Ji-long, JI Xiao-jun. The Advancement of CO2 Biological Trapping and Wastewater Ecological Recovery Based on Microalgae Cultivation.. China Biotechnology, 2011, 31(9): 124-131.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I9/124


[1] Mascarelli A L. Gold rush for algae.Nature, 2009, 461: 460-461.

[2] Wu Y, Gao K, Riebesell U. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum.Biogeosciences Discuss,2010, 7, 3855-3878.

[3] Giordano M, Beardall J, Raven J A. CO2 Concentrating Mechanisms in Algae: Mechanisms, Environmental Modulation, and Evolution. Annu Rev Plant Biol, 2005, 56, 99-131.

[4] Duanmu D, Miller A R, Horken K M, et al. Knockdown of limiting-CO2-induced gene HLA3 decreases HCO3-transport and photosynthetic Ci affinity in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA, 2009, 106:5990-5995.

[5] Thoms S, Markus P, Wolf-Gladrow D A. Model of the carbon concentrating mechanism in chloroplasts of eutaryotic algae. J Theor Biol, 2001, 208: 295-313.

[6] 韩博平, 韩志国, 付翔. 藻类光合作用机理与模型. 北京: 北京科学出版社, 2003, 231-232. Han B P, Han Z G, Fu X. Mechanism and Model of Photosynthesis of Algae. Beijing: Beijing Science Press, 2003, 231-232.

[7] 于娟, 唐学玺, 张培玉,等. CO2加富对UV-B辐射胁迫下亚心形扁藻光合作用和膜脂过氧化以及抗氧化酶活性的影. 植物学报, 2006, 46: 969-972. Yu J, Tang X X, Zhang P Y, et al. Botany, 2006, 46: 969-972.

[8] Takashi Y, Tomoki T, Kyoko H, et al. Light and low-CO2 dependent LCIB/LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii, Plant Cell Physiol, 2010, doi: 10.1093/pcp/pcq105.

[9] 黄和, 张齐, 高振, 等. 一株小球藻藻种及其应用. 中国专利. CN101824386A, 2010.09.08. Hang H, Zhang Q, Gao Z,et al. A Chlorella algae species and its application. China Patent., CN101824386A, 2010.09.08.

[10] De Morais M G, Costa J A V. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Convers Manage, 2007, 48:2169-2173.

[11] Scragg A H, Illman A M, Carden A, et al. Growth of microalgae with increased calorific values in a tubular bioreactor.Biomass Bioenergy, 2002, 23:67-73.

[12] Chiu S Y, Kao C Y, Chen C H, et al. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 2008, 99: 3389-3396.

[13] Huntley M E, Redalje D G.CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strategies Glob Chang, 2007,12: 573-608.

[14] Gomez-Villa H, Voltolina D, Nieves M. Biomass production and nutrient budget in outdoor cultures of Scenedesmus obliquus (Chlorophyceae) in artificial wastewater, under the winter and summer conditions of Mazatlan, Sinaloa, Mexico.Vie et Milieu, 2005,5:121-126.

[15] De Morais M G, Costa J A V. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a threestage serial tubular photobioreactor. J Biotechnol, 2007, 129: 439-445.

[16] Kumar A, Yuan X, Sahu A K,et al. Hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach. J Chem Technol Biotechnol, 2009, 85: 387-394.

[17] Yoo C, Jun S Y, Lee J Y,et al. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology, 2010,101(1, Supplement 1): S71-S74.

[18] Doucha J, Straka F, Lívansky K. Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. Appl. Phycol, 2005, 17: 403-412.

[19] Toshiyuki S, Shigeo K, Yoichiro H, et al. Local and chemical distribution of phlorotannins in brown algae. J Appl Phycol, 2004, 16: 291-296.

[20] Chaea S R, Hwang E J, Shin H S. Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photobioreactor. Biores. Technol. 2006, 97: 322-329.

[21] Chisti Y. Biodiesel from microalgae. Biotechnol, 2007, Adv 25: 294-306.

[22] Fernández A V, Vargas G, Alarcóni N. Evaluation of marine algae as a source of biogas in a two-staged anaerobic reactor system. Biomass and Bioenegr, 2008, 32: 338-344.

[23] Won S W, Mao J, Kwak I S, et al. Platinum recovery from ICP wastewater by a combined method of biosorption and incineration. Bioresour Technol, 2010, 101: 1135-1140.

[24] Deng L P, Zhang Y P, Qin J, et al. Biosorption of Cr(VI) from aqueous solutions by nonliving green algae Cladophora albida. Miner Eng, 2009, 22: 372-377.

[25] De Godosa I, Vargas V A, Blanco S, et al. A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresour Technol, 2010, 101:5150-5158.

[26] Lodi A, Finocchio E, Converti A, et al. Removal of bivalent and trivalent ions by Spirulina platensis biomass: batch experiments and biosorbent characterisation. Int. J. Environ. Technol. Manage, 2010, 12: 202-213.

[27] He S B, Xue G. Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP). J Hazard Mater, 2010, 178: 895-899.

[28] 胡洪营, 李鑫, 杨佳. 基于微藻细胞培养的水质深度净化与高价值生物质生产耦合技术. 生态环境学报, 2009, 18:1122-1127. Hu H Y, Li Y, Yang J. Ecological Environment, 2009, 18:1122-1127.

[29] Kong Q X, Li L, Martinez B,et al. Culture of Microalgae Chlamydomonas reinhardtii in Wastewater for Biomass Feedstock Production. Appl Biochem Biotechnol, 2010, 160: 9-18.

[30] Aslan S, Kapdan I K. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng, 2006, 28:64-70.

[31] 孟范平, 宫艳艳, 马冬冬. 基于微藻的水产养殖废水处理技术研究进展. 微生物学报, 2009, 49:691-696. Meng F P, Gong Y Y, Ma D D. Acta Microbiologica Sinica, 2009, 49: 691-696.

[32] Ergene A, Ada K, Tan S, et al. Removal of Remazol Brilliant Blue R dye from aqueous solutions by adsorption onto immobilized Scenedesmus quadricauda: Equilibrium and kinetic modeling studies. Desalination, 2009, 249: 1308-1314.

[33] 乔小娟, 李国敏, 周金龙, 等. 采煤对地下水资源与环境的影响分析——以山西太原西山煤矿开采区为例. 水资源保护, 2010, 26(1): 49-52. Qiao X J, Li G M, Zhou J L, et al. Water Resources Protection, 2010, 26(1): 49-52.

[34] 耿殿明, 姜福兴. 我国煤炭矿区生态环境问题分析. 煤环境保护. 2002, 16(6): 5-9. Geng D M, Jang F X.Coal Mine Environmental Protection, 2002, 16(6): 5-9.

[35] Sawayama S, Minowa T, Yokoyama S Y. Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass and Bioenergy, 1999, 17 (1): 33-39.

[36] 李元广, 谭天伟, 黄英明.微藻生物柴油产业化技术中的若干科学问题及其分析.中国基础科学,2009,5,64-70. Li Y G, Tan T W, Huang Y M. China Basic Science,, 2009,5,64-70.

[37] Yoo C, Jun S Y, Lee J Y, et al. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology, 2010,1(101): S71-S74.

[38] Kita K, Okada S, Sekino H, et al. Thermal pre-treatment of wet microalgae harvest for efficient hydrocarbon recovery.Applied Energy, 2010,7(87): 2420-2423.

[39] Senthil C,Ashish B, Ryan W H, et al.Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 2010,9(101): 3097-3105.

[1] Zheng-san ZUO,Xiao-man SUN,Lu-jing REN,He HUANG. Improvement of Lipid Accumulation in Microalgae by Novel Cultivation Strategies[J]. China Biotechnology, 2018, 38(7): 102-109.
[2] WANG Cai-xia, ZHANG Teng-jiang, TENG Jie, FENG Xu-dong, LI Chun. The Efficient Carbon-oxygen Transformation and Regulation of Desert Microalgaes[J]. China Biotechnology, 2016, 36(10): 45-52.
[3] YANG Kai, ZHAN Jing-ming, GAO Fen-fang, WU Bao-li, SU Li-xia, ZHOU Wen-ming, XUE Xiang-ming, HAO Jie, ZHAO Yang. Research of Chlorella on the Production of Biodiesel[J]. China Biotechnology, 2015, 35(11): 99-104.
[4] LI Xie-kun, ZHOU Wei-zheng, GUO Ying, WU Hao, XU Jing-liang, YUAN Zhen-hong. Research Progress on Bioethanol Production with Microalgae as Feedstocks[J]. China Biotechnology, 2014, 34(5): 92-99.
[5] LI Yong-fu, MENG Fan-ping, LI Xiang-lei, MA Dong-dong. Effect of Illumination on Microalgae Cultured at High Cell Density in Photo-bioreactor[J]. China Biotechnology, 2013, 33(2): 103-110.
[6] HU Wen-jun, LUO Wei, LI Han-guang, GU Qiu-ya, YU Xiao-bin. Study on Screening and Identification of Oleaginous Microalgae and Its Oil-producing Charateristic[J]. China Biotechnology, 2012, 32(12): 66-72.
[7] LV Yan-xia, CHEN Zhao-an, LU Hong-bin, DENG Mai-cun, XUE Song, ZHANG Wei. Characterization of the Photoelectrode Based on the Immobilization of Microalgae[J]. China Biotechnology, 2012, 32(04): 96-102.
[8] CHEN Li-hong, SUN Li-qin, WANG Chang-hai. Antimicrobial Components from Microalgae and Its Screening Method[J]. China Biotechnology, 2011, 31(9): 109-116.
[9] FENG Di-na, AI Jiang-ning, LIU Ya-nan, CHEN Zhao-an, XUE Song, ZHANG Wei. Effects of Nitrogen-containing Media on the Accumulation of Lipid and Carbohydrate in Marine Microalgae Isochrysis zhanjiangensis[J]. China Biotechnology, 2011, 31(10): 29-34.
[10] LI Tao, LI Ai-fen, SANG Min, WU Hong, YIN Shun-ji, ZHANG Cheng-wu. Screening Oleaginous Microalgae and Evaluation of the Oil-producing Charateristic[J]. China Biotechnology, 2011, 31(04): 98-105.
[11] ZHANG Ji, ZHENG Hong-Li, TANG Xiao-Gong, YIN Ji-Long, GAO Zhen, JI Xiao-Dun, LI Wen-Qi, HUANG He. Application of two-level fuzzy comprehensive evaluation in algae screening for biodiesel-producing microalgae[J]. China Biotechnology, 2010, 30(05): 69-75.
[12] JIANG Jin-Ju, MIAO Feng-Ping, FENG Da-Wei, QIN Song. Research Situation and Prospect of Microalgae Biodiesel[J]. China Biotechnology, 2010, 30(02): 134-137.
[13] JIA Jin-Lan, MO Min-Xi, WANG Run-Min, LIU Feng, LI Li, HUANG Bin, QIU Guan-Zhou. Current status and progress of microalgal biodiesel[J]. China Biotechnology, 2009, 29(07): 118-126.
[14] ZHENG Hong-Li- Zhang-Ji- Ma-Xiao-Chen- Ji-Xiao-Dun- Jin-Beng- Huang-He. Research progress on bio-diesel-producing microalgae cultivation[J]. China Biotechnology, 2009, 29(03): 110-116.