Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (11): 92-98    DOI:
    
Recent Developments in N-linked Glycoproteins Production in Escherichia coli and Glycoprotein Vaccines
MA Zhong-rui, HAN Dong-lei, ZHAO Jun-fei, CHEN Meng-lin, CHEN Min
National Glycoengineering Research Center of The State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan 250100, China
Download: HTML   PDF(1141KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  In the last decade, the investigations into protein N-linked glycosylation system from Campylobacter jejuni become deeper and its heterologous expression in Escherichia coli through introduction of key enzyme PglB and exogenous carrier proteins continue to progress rapidly. Now several kinds of N-linked glycoprotein could be produced using this Escherichia coli recombinant system. This method provides a new and broad way for producing glycoprotein vaccines. In the meantime, such efforts as enhancement of the expression of PglB and selection of glycosylation sites as well as development in enhancing the immune efficacy of glycoprotein have all significantly improved N-glycosylation efficiency in Escherichia coli, which lead to a good future for large-scale production of glycoprotein vaccines.

Key wordsN-linked glycoprotein      Glycoprotein vaccine      PglB      Campylobacter jejuni      Escherichia coli      N-glycosylation efficiency      Immune efficacy     
Received: 29 July 2013      Published: 25 November 2013
ZTFLH:  Q813  
Cite this article:

MA Zhong-rui, HAN Dong-lei, ZHAO Jun-fei, CHEN Meng-lin, CHEN Min. Recent Developments in N-linked Glycoproteins Production in Escherichia coli and Glycoprotein Vaccines. China Biotechnology, 2013, 33(11): 92-98.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I11/92

[1] Sethuraman N, Stadheim T A. Challenges in therapeutic glycoprotein production. Current Opinion in Biotechnology, 2006, 17:341-346.
[2] Pandhal J, Wright P C. N-linked glycoengineering for human therapeutic proteins in bacteria. Biotechnology Letters, 2010, 32:1189-1198.
[3] Anderson P. Antibody responses to haemophilus influenzae type b and diphtheria toxin induced by conjugates of oligosaccharides of the type b capsule with the nontoxic protein crm197. Infection and Immunity, 1983, 39:233-238.
[4] Taylor D N, Trofa A C, Sadoff J, et al. Synthesis, characterization, and clinical evaluation of conjugate vaccines composed of the o-specific polysaccharides of shigella dysenteriae type 1, shigella flexneri type 2a, and shigella sonnei (plesiomonas shigelloides) bound to bacterial toxoids. Infection and Immunity, 1993, 61:3678-3687.
[5] Szymanski C M, Yao R, Ewing C P, et al. Evidence for a system of general protein glycosylation in campylobacter jejuni. Molecular Microbiology, 1999, 32:1022-1030.
[6] Young N M, Brisson J R, Kelly J, et al. Structure of the n-linked glycan present on multiple glycoproteins in the gram-negative bacterium, campylobacter jejuni. The Journal of Biological Chemistry, 2002, 277:42530-42539.
[7] Linton D, Dorrell N, Hitchen P G, et al. Functional analysis of the campylobacter jejuni n-linked protein glycosylation pathway. Molecular Microbiology, 2005, 55:1695-1703.
[8] Wacker M, Linton D, Hitchen P G, et al. N-linked glycosylation in campylobacter jejuni and its functional transfer into E. coli. Science, 2002, 298:1790-1793.
[9] Huang C J, Lin H, Yang X. Industrial production of recombinant therapeutics in escherichia coli and its recent advancements. Journal of Industrial Microbiology & Biotechnology, 2012, 39:383-399.
[10] Terra V S, Mills D C, Yates L E, et al. Recent developments in bacterial protein glycan coupling technology and glycoconjugate vaccine design. Journal of Medical Microbiology, 2012, 61:919-926.
[11] Schwarz F, Lizak C, Fan Y Y, et al. Relaxed acceptor site specificity of bacterial oligosaccharyltransferase in vivo. Glycobiology, 2011, 21:45-54.
[12] Lizak C, Gerber S, Numao S, et al. X-ray structure of a bacterial oligosaccharyltransferase. Nature, 2011, 474:350-355.
[13] Li L, Woodward R, Ding Y, et al. Overexpression and topology of bacterial oligosaccharyltransferase pglb. Biochemical and Biophysical Research Communications, 2010, 394:1069-1074.
[14] Chen M M, Glover K J, Imperiali B. From peptide to protein: Comparative analysis of the substrate specificity of n-linked glycosylation in C. jejuni. Biochemistry, 2007, 46:5579-5585.
[15] Kowarik M, Young N M, Numao S, et al. Definition of the bacterial n-glycosylation site consensus sequence. The EMBO Journal, 2006, 25:1957-1966.
[16] Kowarik M, Numao S, Feldman M F, et al. N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science, 2006, 314:1148-1150.
[17] Nothaft H, Liu X, McNally D J, et al. Study of free oligosaccharides derived from the bacterial n-glycosylation pathway. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106:15019-15024.
[18] Liu X, McNally D J, Nothaft H, et al. Mass spectrometry-based glycomics strategy for exploring n-linked glycosylation in eukaryotes and bacteria. Analytical Chemistry, 2006, 78:6081-6087.
[19] Suzuki T, Funakoshi Y. Free n-linked oligosaccharide chains: Formation and degradation. Glycoconjugate Journal, 2006, 23:291-302.
[20] Chantret I, Moore S E. Free oligosaccharide regulation during mammalian protein n-glycosylation. Glycobiology, 2008, 18:210-224.
[21] Hirayama H, Seino J, Kitajima T, et al. Free oligosaccharides to monitor glycoprotein endoplasmic reticulum-associated degradation in saccharomyces cerevisiae. The Journal of Biological Chemistry, 2010, 285:12390-12404.
[22] Pandhal J, Desai P, Walpole C, et al. Systematic metabolic engineering for improvement of glycosylation efficiency in Escherichia coli. Biochemical and Biophysical Research Communications, 2012, 419:472-476.
[23] Miroux B, Walker J E. Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. Journal of Molecular Biology, 1996, 260:289-298.
[24] Fisher A C, Haitjema C H, Guarino C, et al. Production of secretory and extracellular n-linked glycoproteins in escherichia coli. Applied and Environmental Microbiology, 2011, 77:871-881.
[25] Mergulhao F J, Summers D K, Monteiro G A. Recombinant protein secretion in Escherichia coli. Biotechnology Advances, 2005, 23:177-202.
[26] Pandhal J, Woodruff L B, Jaffe S, et al. Inverse metabolic engineering to improve Escherichia coli as an n-glycosylation host. Biotechnology and Bioengineering, 2013, 110:2482-2493.
[27] Fernandez S, Palmer D R, Simmons M, et al. Potential role for toll-like receptor 4 in mediating Escherichia coli maltose-binding protein activation of dendritic cells. Infection and Immunity, 2007, 75:1359-1363.
[28] Vliegenthart J F. Carbohydrate based vaccines. FEBS letters, 2006, 580:2945-2950.
[29] Peeters C C, Tenbergen-Meekes A M, Poolman J T, et al. Immunogenicity of a streptococcus pneumoniae type 4 polysaccharide——protein conjugate vaccine is decreased by admixture of high doses of free saccharide. Vaccine, 1992, 10:833-840.
[30] Paoletti L C, Kasper D L, Michon F, et al. Effects of chain length on the immunogenicity in rabbits of group b streptococcus type iii oligosaccharide-tetanus toxoid conjugates. The Journal of Clinical Investigation, 1992, 89:203-209.
[31] Benaissa-Trouw B, Lefeber D J, Kamerling J P, et al. Synthetic polysaccharide type 3-related di-, tri-, and tetrasaccharide-crm(197) conjugates induce protection against streptococcus pneumoniae type 3 in mice. Infection and Immunity, 2001, 69:4698-4701.
[32] Schwarz F, Huang W, Li C, et al. A combined method for producing homogeneous glycoproteins with eukaryotic n-glycosylation. Nature Chemical Biology, 2010, 6:264-266.
[1] HU Li-qiang, ZHENG Wen, ZHONG Yi, DU Dan, YANG Hao, GONG Meng. Comparison of Expression and Activity of Antiviral Protein RC28 in Escherichia coli and Pichia pastoris[J]. China Biotechnology, 2017, 37(1): 14-20.
[2] XU Li, XIONG Wei, YANG Jiang-Ke. Four Types of Promoter Controlled Campylobacter jejuni Single Hemoglobin Improved the Growth of Escherichia coli[J]. China Biotechnology, 2016, 36(2): 43-50.
[3] WU Xue-long, YANG Xiao-hui, WANG Jun-qing, WANG Rui-ming. Expression and Characteristics of Apis mellifera NADPH-cytochrome P450 Reductase Gene in Escherichia coli[J]. China Biotechnology, 2016, 36(12): 28-35.
[4] ZHANG Qiang, LI Da shuai, LU Wen yu. Progress and Prospect of Heterologous Biosynthesis of Ttriterpenoids in Engineered Escherichia coli[J]. China Biotechnology, 2016, 36(11): 83-89.
[5] FANG Li xia, CAO Ying xiu, SONG Hao. Engineering Escherichia coli to Synthesize Free Fatty Acids: A Recent Progress[J]. China Biotechnology, 2016, 36(11): 90-97.
[6] XIONG Yuan-yuan, LU Chuan-dong, TAO Ye, ZHAO Jin-fang. Fermentative Production of L-lactic Acid from Wastepaper by Recombinant Escherichia coli WL204[J]. China Biotechnology, 2015, 35(5): 49-54.
[7] GUO Zhao-lai, BAI Xue-gui, YAN Jin-ping, CHEN Xuan-qin, LI Kun-zhi, XU Hui-ni. Prokaryotic Expression and Function Analysis of SoHb from Spinach[J]. China Biotechnology, 2015, 35(4): 54-59.
[8] QIAN Xin, GUO Hong-yan, ZHOU Qing-feng. Construction of 4-Hydroxyphenylacetate-3-hydroxylase A Expression Strain and Its Biotransformation Effect on Hydroxytyrosol[J]. China Biotechnology, 2015, 35(3): 56-60.
[9] FENG Qi, WANG Ying. Optimization and Application of SLiCE in vitro Assembly Method[J]. China Biotechnology, 2015, 35(10): 59-65.
[10] WANG Jian-feng, ZHANG Si-liang, WANG Yong. Pathway Assembly and Optimization in E. coli for de Novo Biosynthesis of Resveratrol[J]. China Biotechnology, 2014, 34(2): 71-77.
[11] LU Hong-ying, HE Hu, LIU Zao, WANG Yong-ze, WANG Jin-hua. Engineering of an Escherichia coli Strain LHY02 for Production of Optically Pure D-lactic Acid from Xylose[J]. China Biotechnology, 2014, 34(12): 91-96.
[12] MAO Hong-yan, MA Zheng-hai. Expression, Purification of Recombinant Herpes Simplex Virus 1 Glycoprotein D in E.coli and Identification of Its Immune Activity[J]. China Biotechnology, 2014, 34(11): 54-59.
[13] YUAN Ying-shuo, SONG Fei-fei, LIU Guo-qiang, LIU Ye, ZHANG Shou-feng, ZHANG Le-cui, HU Rong-liang. Construction and Immune Efficacy of Recombinant Adenovirus Expressing H Gene of Canine Distemper Virus[J]. China Biotechnology, 2014, 34(1): 64-70.
[14] MA Huai-yuan, HUANG Fei, BAI Lin-han. Accumulation of Aspartic Acid in Escherichia coli W3110 is Improved by Homologous Recombination[J]. China Biotechnology, 2014, 34(06): 61-67.
[15] GE Gao-shun, ZHANG Li-chao, ZHAO Xin, HU Xue-jun, LI Ya-jie. Optimization of the Method for Scarless Gene Knockout in Escherichia coli Genome[J]. China Biotechnology, 2014, 34(06): 68-74.