Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (5): 87-93    DOI: 10.13523/j.cb.2101018
综述     
信号肽在大肠杆菌分泌系统中的研究与应用进展
何若昱1,2,林福玉2,高向东1,*(),刘金毅2,*()
1 中国药科大学生命科学与技术学院 南京 210009
2 北京三元基因药业股份有限公司 北京 102600
Research and Application Progress of Signal Peptides in Escherichia coli Secretion Systems
HE Ruo-yu1,2,LIN Fu-yu2,GAO Xiang-dong1,*(),LIU Jin-yi2,*()
1 School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
2 Beijing Tri-Prime Genetic Engineering Co., Ltd, Beijing 102600, China
 全文: PDF(429 KB)   HTML
摘要:

大肠杆菌以其明显的优势成为表达重组蛋白常用的系统,但是大肠杆菌本身不具备细胞内形成二硫键的氧化条件和分子机制,而且高水平表达时常容易聚集形成包涵体,限制了其使用,改善这一缺点的重要方法是通过信号肽实现蛋白质的分泌表达。信号肽一般存在于分泌蛋白的氨基端,能够引导蛋白质通过大肠杆菌中的Sec或/和Tat系统分泌至周质空间。简要概述了大肠杆菌中两种跨膜分泌系统和信号肽的结构,并结合近年来常用6种信号肽的研究与应用进展,阐述了信号肽在使用中存在的问题及改进措施。旨在为研究者合理选择信号肽、优化重组蛋白的表达提供更多可用的信息与策略。

关键词: 信号肽大肠杆菌分泌系统    
Abstract:

Escherichia coli has become a commonly used system for expressing recombinant proteins due to its obvious advantages. However, E. coli does not have the oxidative conditions and molecular mechanisms for the formation of disulfide bonds in the cytoplasm, and high-level expression often tends to aggregate to form inclusion bodies, which limits its use. Signal peptides to guide proteins secretion can overcome this shortcoming. The proteins with signal peptides are secreted by the Sec or/and Tat systems in E. coli. The E. coli secretion systems and the structure of signal peptides were summarized. Meanwhile, the research and application progress of six commonly used signal peptides in recent years were introduced. Finally, the problems and improvement measures in the application of signal peptides were summarized,which would provide more useful information and strategies for researchers to select signal peptides reasonably and optimize the expression of recombinant proteins.

Key words: Signal peptide    Escherichia coli    Secretion system
收稿日期: 2021-01-14 出版日期: 2021-06-01
ZTFLH:  Q816  
通讯作者: 高向东,刘金毅     E-mail: xdgao@cpu.edu.cn;liujinyi@triprime.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
何若昱
林福玉
高向东
刘金毅

引用本文:

何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.

HE Ruo-yu,LIN Fu-yu,GAO Xiang-dong,LIU Jin-yi. Research and Application Progress of Signal Peptides in Escherichia coli Secretion Systems. China Biotechnology, 2021, 41(5): 87-93.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2101018        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I5/87

名称 氨基酸序列 来源 分泌系统
OmpA信号肽 MKKTAIATAVALAGFATVAQA 大肠杆菌外膜蛋白 Sec(翻译后转运)
PelB信号肽 MKYLLPTAAAGLLLLAAQPAMA 胡萝卜欧文氏菌 Sec(翻译后转运)
STII信号肽 MKKNIAFLLASMFVFSIATNAYA 大肠杆菌细胞外肽毒素 Sec(翻译后转运)
PhoA信号肽 MKQSTIALALLPLLFTPVTKA 大肠杆菌周质蛋白 Sec(翻译后转运)
DsbA信号肽 MKKIWLALAGLVLAFSASA 大肠杆菌周质蛋白 Sec(共翻译转运)
TorA信号肽 MNNNDLFQASRRRFLAQLGGLTVAGMLGPSLLTPRRATAAQAA 大肠杆菌周质蛋白 Tat
表1  大肠杆菌系统中常用的6种信号肽
[1] Hajihassan Z, Khairkhah N, Zandsalimi F. Enhanced periplasmic expression of human activin A in Escherichia coli using a modified signal peptide. Preparative Biochemistry & Biotechnology, 2020,50(2):141-147.
[2] Sørensen H P, Mortensen K K. Advanced genetic strategies for recombinant protein expression in Escherichia coli. Journal of Biotechnology, 2005,115(2):113-128.
doi: 10.1016/j.jbiotec.2004.08.004
[3] Fessl T, Watkins D, Oatley P, et al. Dynamic action of the Sec machinery during initiation, protein translocation and termination. Elife, 2018,7:e35112.
doi: 10.7554/eLife.35112
[4] Jomaa A, Boehringer D, Leibundgut M, et al. Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Nature Communications, 2016,7:10471.
doi: 10.1038/ncomms10471
[5] Freudl R. Signal peptides for recombinant protein secretion in bacterial expression systems. Microbial Cell Factories, 2018,17(1):1-10.
doi: 10.1186/s12934-017-0850-2
[6] Blümmel A S, Drepper F, Knapp B, et al. Structural features of the TatC membrane protein that determine docking and insertion of a twin-arginine signal peptide. The Journal of Biological Chemistry, 2017,292(52):21320-21329.
doi: 10.1074/jbc.M117.812560
[7] Huang Q, Palmer T. Signal peptide hydrophobicity modulates interaction with the twin-arginine translocase. mBio, 2017,8(4):e00909-e00917.
[8] Kang D G, Seo J H, Jo B H, et al. Versatile signal peptide of Flavobacterium-originated organophosphorus hydrolase for efficient periplasmic translocation of heterologous proteins in Escherichia coli. Biotechnology Progress, 2016,32(4):848-854.
doi: 10.1002/btpr.v32.4
[9] Owji H, Nezafat N, Negahdaripour M, et al. A comprehensive review of signal peptides: Structure, roles, and applications. European Journal of Cell Biology, 2018,97(6):422-441.
doi: 10.1016/j.ejcb.2018.06.003
[10] von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. European Journal of Biochemistry, 1983,133(1):17-21.
pmid: 6852022
[11] Ting Y T, Harris P W R, Batot G, et al. Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization. IUCrJ, 2016,3(Pt 1):10-19.
doi: 10.1107/S2052252515019971
[12] Low K O, Jonet M A, Ismail N F, et al. Optimization of a Bacillus sp. signal peptide for improved recombinant protein secretion and cell viability in Escherichia coli. Bioengineered, 2012,3(6):334-338.
doi: 10.4161/bioe.21454
[13] Zhou Y Z, Liu P, Gan Y T, et al. Enhancing full-length antibody production by signal peptide engineering. Microbial Cell Factories, 2016,15(1):1-11.
doi: 10.1186/s12934-015-0402-6
[14] Jeiranikhameneh M, Moshiri F, Keyhan Falasafi S, et al. Designing signal peptides for efficient periplasmic expression of human growth hormone in Escherichia coli. Journal of Microbiology and Biotechnology, 2017,27(11):1999-2009.
doi: 10.4014/jmb.1703.03080 pmid: 28851205
[15] Juibari A D, Ramezani S, Rezadoust M H. Bioinformatics analysis of various signal peptides for periplasmic expression of parathyroid hormone in E. coli. J Med Life, 2019,12(2):184-191.
[16] Confer A W, Ayalew S. The OmpA family of proteins: Roles in bacterial pathogenesis and immunity. Veterinary Microbiology, 2013,163(3-4):207-222.
doi: 10.1016/j.vetmic.2012.08.019
[17] Nielsen D W, Ricker N, Barbieri N L, et al. Outer membrane protein A (OmpA) of extraintestinal pathogenic Escherichia coli. BMC Research Notes, 2020,13(1):1-7.
doi: 10.1186/s13104-019-4871-2
[18] Movva N R, Nakamura K, Inouye M. Amino acid sequence of the signal peptide of ompA protein, a major outer membrane protein of Escherichia coli. Journal of Biological Chemistry, 1980,255(1):27-29.
doi: 10.1016/S0021-9258(19)86257-9
[19] Baars L, Ytterberg A J, Drew D, et al. Defining the role of the Escherichia coli chaperone SecB using comparative proteomics. The Journal of Biological Chemistry, 2006,281(15):10024-10034.
doi: 10.1074/jbc.M509929200
[20] Sun X Y, Shen W, Gao Y Y, et al. Heterologous expression and purification of a marine alginate lyase in Escherichia coli. Protein Expression and Purification, 2019,153:97-104.
doi: 10.1016/j.pep.2018.09.002
[21] Pechsrichuang P, Songsiriritthigul C, Haltrich D, et al. OmpA signal peptide leads to heterogenous secretion of B. subtilis chitosanase enzyme from E. coli expression system. SpringerPlus, 2016,5(1):1-10.
doi: 10.1186/s40064-015-1659-2
[22] Zhao F K, Song Q Z, Wang B B, et al. Secretion of the recombination α-amylase in Escherichia coli and purification by the gram-positive enhancer matrix (GEM) particles. International Journal of Biological Macromolecules, 2019,123:91-96.
doi: 10.1016/j.ijbiomac.2018.11.047
[23] Wang H, Zhang L, Zhang W J, et al. Secretory expression of biologically active chondroitinase ABC I for production of chondroitin sulfate oligosaccharides. Carbohydrate Polymers, 2019,224:115135.
doi: S0144-8617(19)30802-1 pmid: 31472845
[24] 刘应洲, 谭咪乐, 李永杰, 等. 衍生自大肠杆菌OmpA信号肽的多肽P-KKK杀菌作用研究. 内科, 2018,13(3):284-287.
Liu Y Z, Tan M L, Li Y J, et al. Study on the bactericidal activity of polypeptide P-KKK derived from E. coli OmpA signal peptide. Internal Medicine, 2018,13(3):284-287.
[25] Lei S P, Lin H C, Wang S S, et al. Characterization of the Erwinia carotovora peh gene and its product polygalacturonase. Gene, 1992,117(1):119-124.
pmid: 1644302
[26] Pugsley A P. The complete general secretory pathway in gram-negative bacteria. Microbiological Reviews, 1993,57(1):50-108.
pmid: 8096622
[27] Mohajeri A, Pilehvar-Soltanahmadi Y, Pourhassan-Moghaddam M, et al. Cloning and expression of recombinant human endostatin in periplasm of Escherichia coli expression system. Advanced Pharmaceutical Bulletin, 2016,6(2):187-194.
doi: 10.15171/apb.2016.026 pmid: 27478780
[28] Sriwidodo S, Subroto T, Maksum I, et al. Optimization of secreted recombinant human epidermal growth factor production using pectate lyase B from Escherichia coli BL21(DE3) by central composite design and its production in high cell density culture. Journal of Pharmacy and Bioallied Sciences, 2019,11(8):562.
doi: 10.4103/jpbs.JPBS_207_19
[29] Kulmala A, Huovinen T, Lamminmäki U. Improvement of Fab expression by screening combinatorial synonymous signal sequence libraries. Microbial Cell Factories, 2019,18(1):157.
doi: 10.1186/s12934-019-1210-1
[30] Robertson K E, Truong C D, Craciunescu F M, et al. Membrane directed expression in Escherichia coli of BBA57 and other virulence factors from the Lyme disease agent Borrelia burgdorferi. Scientific Reports, 2019,9:17606.
doi: 10.1038/s41598-019-53830-x pmid: 31772280
[31] Deb A, Johnson W A, Kline A P, et al. Bacterial expression, correct membrane targeting and functional folding of the HIV-1 membrane protein Vpu using a periplasmic signal peptide. PLoS One, 2017,12(2):e0172529.
doi: 10.1371/journal.pone.0172529
[32] Pan X, Yu Q, Chu J L, et al. Fitting replacement of signal peptide for highly efficient expression of three penicillin G acylases in E. coli. Applied Microbiology and Biotechnology, 2018,102(17):7455-7464.
doi: 10.1007/s00253-018-9163-6
[33] Wang P P, Ma J F, Zhang Y, et al. Efficient secretory overexpression of endoinulinase in Escherichia coli and the production of inulooligosaccharides. Applied Biochemistry and Biotechnology, 2016,179(5):880-894.
doi: 10.1007/s12010-016-2037-4
[34] Picken R N, Mazaitis A J, Maas W K, et al. Nucleotide sequence of the gene for heat-stable enterotoxin II of Escherichia coli. Infection and Immunity, 1983,42(1):269-275.
doi: 10.1128/IAI.42.1.269-275.1983
[35] 卢晨, 赵辉, 邹文艺, 等. 重组人干扰素α-2b在大肠杆菌中分泌表达. 生物学杂志, 2011,28(3):58-62.
Lu C, Zhao H, Zou W Y, et al. Secretion expression of recombinate human interferon α-2b by Escherichia coli. Journal of Biology, 2011,28(3):58-62.
[36] Luo M Y, Zhao M Q, Cagliero C, et al. A general platform for efficient extracellular expression and purification of Fab from Escherichia coli. Applied Microbiology and Biotechnology, 2019,103(8):3341-3353.
doi: 10.1007/s00253-019-09745-8
[37] Coleman J E. Structure and mechanism of alkaline phosphatase. Annual Review of Biophysics and Biomolecular Structure, 1992,21(1):441-483.
doi: 10.1146/annurev.bb.21.060192.002301
[38] Mohajeri A, Abdolalizadeh J, Pilehvar-Soltanahmadi Y, et al. Expression and secretion of endostar protein by Escherichia coli: optimization of culture conditions using the response surface methodology. Molecular Biotechnology, 2016,58(10):634-647.
doi: 10.1007/s12033-016-9963-9 pmid: 27377615
[39] Seyed Hosseini Fin N A, Barshan-Tashnizi M, Sajjadi S M, et al. The effects of overexpression of cytoplasmic chaperones on secretory production of hirudin-PA in E. coli. Protein Expression and Purification, 2019,157:42-49.
doi: S1046-5928(18)30602-8 pmid: 30708036
[40] Schierle C F, Berkmen M, Huber D, et al. The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. Journal of Bacteriology, 2003,185(19):5706-5713.
doi: 10.1128/JB.185.19.5706-5713.2003
[41] Schlegel S, Rujas E, Ytterberg A J, et al. Optimizing heterologous protein production in the periplasm of E. coli by regulating gene expression levels. Microbial Cell Factories, 2013,12(1):1-12.
doi: 10.1186/1475-2859-12-1
[42] Zhang W Q, Lu J, Zhang S W, et al. Development an effective system to expression recombinant protein in E. coli via comparison and optimization of signal peptides: Expression of Pseudomonas fluorescens BJ-10 thermostable lipase as case study. Microbial Cell Factories, 2018,17(1):1-12.
doi: 10.1186/s12934-017-0850-2
[43] Kasli I M, Thomas O R T, Overton T W. Use of a design of experiments approach to optimise production of a recombinant antibody fragment in the periplasm of Escherichia coli: selection of signal peptide and optimal growth conditions. AMB Express, 2019,9(1):5.
doi: 10.1186/s13568-018-0727-8
[44] Santini C L, Ize B, Chanal A, et al. A novel sec-independent periplasmic protein translocation pathway in Escherichia coli. The EMBO Journal, 1998,17(1):101-112.
doi: 10.1093/emboj/17.1.101
[45] Sargent F. Overlapping functions of components of a bacterial Sec-independent protein export pathway. The EMBO Journal, 1998,17(13):3640-3650.
doi: 10.1093/emboj/17.13.3640
[46] Sutherland G A, Grayson K J, Adams N B P, et al. Probing the quality control mechanism of the Escherichia coli twin-arginine translocase with folding variants of a de novo-designed heme protein. Journal of Biological Chemistry, 2018,293(18):6672-6681.
doi: 10.1074/jbc.RA117.000880 pmid: 29559557
[47] Guerrero Montero I, Richards K L, Jawara C, et al. Escherichia coli “TatExpress” strains export several g/L human growth hormone to the periplasm by the Tat pathway. Biotechnology and Bioengineering, 2019,116(12):3282-3291.
doi: 10.1002/bit.27147 pmid: 31429928
[48] Jong W S P, Vikström D, Houben D E, et al. Application of an E. coli signal sequence as a versatile inclusion body tag. Microbial Cell Factories, 2017,16(1):1-13.
doi: 10.1186/s12934-016-0616-2
[49] Choo K H, Ranganathan S. Flanking signal and mature peptide residues influence signal peptide cleavage. BMC Bioinformatics, 2008,9(12):1-11.
doi: 10.1186/1471-2105-9-1
[50] Kipriyanov S M, Moldenhauer G, Little M. High level production of soluble single chain antibodies in small-scale Escherichia coli cultures. Journal of Immunological Methods, 1997,200(1-2):69-77.
doi: 10.1016/S0022-1759(96)00188-3
[51] Yang J, Moyana T, MacKenzie S, et al. One hundred seventy-fold increase in excretion of an FV fragment-tumor necrosis factor alpha fusion protein (sFV/TNF-alpha) from Escherichia coli caused by the synergistic effects of Glycine and triton X-100. Applied and Environmental Microbiology, 1998,64(8):2869-2874.
doi: 10.1128/AEM.64.8.2869-2874.1998
[52] Ruano-Gallego D, Fraile S, Gutierrez C, et al. Screening and purification of nanobodies from E. coli culture supernatants using the hemolysin secretion system. Microbial Cell Factories, 2019,18(1):1-13.
doi: 10.1186/s12934-018-1049-x
[53] Zhang H, Hsieh Y H, Lin B R, et al. Specificity of SecYEG for PhoA precursors and SecA homologs on SecA protein-conducting channels. Biochemical and Biophysical Research Communications, 2013,437(2):212-216.
doi: 10.1016/j.bbrc.2013.06.039 pmid: 23791875
[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[3] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[4] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[5] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[6] 乐易林,傅毓,倪黎,孙建中. 热稳定性丙酮酸:铁氧还蛋白氧化还原酶异源表达及其在乙酰辅酶A合成中的应用 *[J]. 中国生物工程杂志, 2020, 40(3): 72-78.
[7] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[8] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[9] 安明晖,田文,韩晓旭,尚红. 表达HIV单链抗体的重组乳酸杆菌的构建及表型分析 *[J]. 中国生物工程杂志, 2019, 39(10): 1-8.
[10] 方雪瑶,胡龙华,杭亚平,俞凤,陈艳慧,钟桥石. 铜绿假单胞菌Ⅵ型分泌系统的研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 88-93.
[11] 贺雪婷,张敏华,洪解放,马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 81-87.
[12] 王男,金吕华,张玲,林荣,杨海麟. 信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究[J]. 中国生物工程杂志, 2018, 38(4): 46-53.
[13] 张玲,王男,金吕华,林荣,杨海麟. 双启动子促进亮氨酸脱氢酶在Bacillus subtilis中表达及发酵研究 *[J]. 中国生物工程杂志, 2018, 38(12): 21-31.
[14] 杨青, 汪斌, 王亚伟, 张华山, 熊海容, 张莉. 介导两种半纤维素酶分泌表达的信号肽比较[J]. 中国生物工程杂志, 2017, 37(8): 15-22.
[15] 胡立强, 郑文, 钟艺, 杜丹, 杨浩, 龚萌. 抗病毒蛋白RC28在大肠杆菌和毕赤酵母中的表达及活性比较[J]. 中国生物工程杂志, 2017, 37(1): 14-20.