Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (1): 1-11    DOI: 10.13523/j.cb.2009029
研究报告     
不同D/L单体比γ-聚谷氨酸的合成与调控
朱亚鑫1,2,段艳婷1,2,高宇豪1,2,王籍阅1,2,张晓梅3,张晓娟1,2,徐国强1,2,**(),史劲松3,许正宏1,2
1 江南大学生物工程学院 工业生物技术教育部重点实验室 无锡 214122
2 江南大学粮食发酵工艺与技术国家工程实验室 无锡 214122
3 江南大学药学院 无锡 214122
Synthesis and Regulation of Poly-γ-glutamic Acid with Different D/L Monomer Ratios
ZHU Ya-xin1,2,DUAN Yan-ting1,2,GAO Yu-hao1,2,WANG Ji-yue1,2,ZHANG Xiao-mei3,ZHANG Xiao-juan1,2,XU Guo-qiang1,2,**(),SHI Jin-song3,XU Zheng-hong1,2
1 Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
2 National Engineering Laboratory for Food Fermentation Technology and Technology, Jiangnan University, Wuxi 214122, China
3 School of Pharmaceutics, Jiangnan University, Wuxi 214122, China
 全文: PDF(37094 KB)   HTML
摘要:

γ-聚谷氨酸(γ-PGA)是由L-谷氨酸和/或D-谷氨酸聚合而成的一种聚氨基酸,广泛应用于化妆品、医药等领域。高聚物单体的立体构型会影响产品性质和应用,因此调控γ-PGA中D-谷氨酸/L-谷氨酸单体比(D/L单体比)具有重要意义。前期以谷氨酸棒杆菌为底盘,表达来自于地衣芽孢杆菌的γ-PGA合成酶,合成以L-Glu(97.10%)为主的γ-PGA。通过外源添加不同浓度D-谷氨酸,合成了D-谷氨酸占比为15.71%~33.52%的γ-PGA。然后,在重组菌中表达来自于枯草芽孢杆菌的谷氨酸消旋酶,并使用三个不同强度RBS调控其表达水平,合成D-谷氨酸占比30.82%~34.59%的γ-PGA,但调控范围较窄。利用四个不同强度启动子调控谷氨酸消旋酶表达水平,扩大D/L单体比可调范围,合成D-Glu占比32.71%~52.53%的γ-PGA。提供一种理性调控γ-PGA的D/L单体比策略,实现了D-谷氨酸占比为2.90%~52.53%的γ-PGA的合成,为高效合成不同D/L单体比γ-PGA提供了基础。

关键词: γ-聚谷氨酸D/L单体比谷氨酸消旋酶RBS启动子    
Abstract:

Poly-γ-glutamic acid (γ-PGA) is a kind of poly-amino acid formed by polymerization of L-glutamic acid (L-Glu) and / or D-glutamic acid (D-Glu), and is widely used in cosmetics, medicine and other fields. The stereochemical composition of its monomer often affects the properties and applications of the product. Therefore, it is of great significance to control the monomer ratio of D-Glu/L-Glu (D/L monomer ratio) in γ-PGA. In our previous study, Corynebacterium glutamicum was used as the chassis to overexpress γ-PGA synthetase from Bacillus licheniformis, and synthesize γ-PGA with L-Glu as the main component. On this basis, different concentrations of D-Glu were added exogenously to synthesize γ-PGA with D-Glu accounting for 15.71% ~ 33.52%. Then, the glutamate racemase from Bacillus subtilis was overexpressed in the recombinant bacteria, and three RBS of different strengths were used to regulate its expression level, however, and γ-PGA with D-Glu accounting for a narrow range (30.82%~34.59%) was synthesized. Subsequently, four different strength promoters were used to regulate the expression level of glutamate racemase, and γ-PGA with D-Glu accounting for 32.71%~52.53% was synthesized. A rational strategy for regulating the D/L monomer ratio of γ-PGA was proposed, and γ-PGA with a D-Glu ratio of 2.90%~52.53% was synthesized, which laid the foundation for the efficient synthesis of γ-PGA with different D/L monomer ratios.

Key words: Poly-γ-glutamic acid;    D/L monomer ratio    Glutamate racemase    RBS    Promoter
收稿日期: 2020-09-17 出版日期: 2021-02-09
ZTFLH:  Q815  
基金资助: * 国家重点研发计划(2018YFA0900300);江苏省六大人才高峰项目(2015-SWYY-006)
通讯作者: 徐国强     E-mail: xuguoqiang@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱亚鑫
段艳婷
高宇豪
王籍阅
张晓梅
张晓娟
徐国强
史劲松
许正宏

引用本文:

朱亚鑫, 段艳婷, 高宇豪, 王籍阅, 张晓梅, 张晓娟, 徐国强, 史劲松, 许正宏. 不同D/L单体比γ-聚谷氨酸的合成与调控[J]. 中国生物工程杂志, 2021, 41(1): 1-11.

ZHU Ya-xin, DUAN Yan-ting, GAO Yu-hao, WANG Ji-yue, ZHANG Xiao-mei, ZHANG Xiao-juan, XU Guo-qiang, SHI Jin-song, XU Zheng-hong. Synthesis and Regulation of Poly-γ-glutamic Acid with Different D/L Monomer Ratios. China Biotechnology, 2021, 41(1): 1-11.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2009029        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I1/1

Strains/Plasmids Description Sources
Cg F343-pZM1-capBCA Cg F343 harboring pZM1-capBCA This study
Cg F343-pZM1-capBCA-R0-racE Cg F343 harboring pZM1- capBCA-R0-racE This study
Cg F343-pZM1-capBCA-RH-racE Cg F343 harboring pZM1- capBCA-RH-racE This study
Cg F343-pZM1-capBCA-RL-racE Cg F343 harboring pZM1- capBCA-RL-racE This study
Cg F343-pZM1-capBCA-e-racE Cg F343 harboring pZM1- capBCA-e-racE This study
Cg F343-pZM1-capBCA-16-racE Cg F343 harboring pZM1- capBCA-16-racE This study
Cg F343-pZM1-capBCA-11-racE Cg F343 harboring pZM1- capBCA-11-racE This study
Cg F343-pZM1-capBCA-12-racE Cg F343 harboring pZM1- capBCA-12-racE This study
表1  菌株与质粒
引物名称 序列(5'-3')
racE-R0-F GGGAATTCCATATGTTGGAACAACCAATAGGAGT
racE-RL-F CGCGGATCCCTATCTTCTAATCGGTTCTTG
racE-RH-F CTAGTCTAGAGGGGTCACGACACACGTCAGGCGAATTGGAACAACCAATAGGAGT
BamH I-racE-R CGCGGATCCCTATCTTCTAATCGGTTCTTG
dap-e-racE-F AATTACCGCCTAGGGAGCTGTTGTTTAGCCACCAAATGAGGGAAAGAGGCACAATGGAACTC
dap-A-16-1-racE-F AATTACCGCCTAGGGAGCTGTTGTTTAACCCCCAAATGAGGGAAGAAGGTATAATTGAACTC
dap-e11-racE-F AATTACCGCCTAGGGAGCTGTTGTTTTGACACCAAATGAGGGAATGTGCTATAATGGAACTC
dap-e12-racE-F AATTACCGCCTAGGGAGCTGTTGTTTTGACACCAAATGAGGGAATGTGGTAGAGTGGAACTC
Sal I-racE-R ACGCGTCGACTCCTCCTTTCGCTAGCAAAAAACCC
pZM1-F TGTTGCCCGTCTCACTGGT
pZM1-R CGACACGGAAATGTTGAATA
pZM1-capBCA-F TTGAAACGAAAAGCGATCTT
racE- RT-F ATCGCATTGGAAGACATC
racE- RT-R TGCTCTTAATCGTATTCTCTG
表2  本研究所用引物
图1  重组菌C. glutamicum F343-pZM1-capBCA发酵特性
图2  产自C. glutamicum F343-pZM1-capBCA的γ-PGA立体构型
图3  外源添加D-Glu对γ-PGA的D/L单体比影响
图4  C. glutamicum F343 pZMI-capBCA-R0/RH/RL-racE菌落PCR验证
图5  基于RBS计算器调控谷氨酸消旋酶表达对γ-PGA发酵特性影响
图6  RBS调控谷氨酸消旋酶表达水平对γ-PGA的D/L单体比(a)及酶活(b)影响
图7  C. glutamicum F343 pZMI-capBCA-e/11/12/16-racE菌落PCR验证
图8  基于组成型启动子调控谷氨酸消旋酶表达对γ-PGA发酵特性影响
图9  组成型启动子调控谷氨酸消旋酶表达水平对γ-PGA的D/L单体比(a)及转录水平(b)影响
[1] Cao M F, Feng J, Sirisansaneeyakul S, et al. Genetic and metabolic engineering for microbial production of poly-γ-glutamic acid. Biotechnology Advances, 2018,36(5):1424-1433.
pmid: 29852203
[2] Sha Y Y, Sun T, Qiu Y B, et al. Investigation of glutamate dependence mechanism for poly-γ-glutamic acid production in Bacillus subtilis on the basis of transcriptome analysis. Journal of Agricultural and Food Chemistry, 2019,67(22):6263-6274.
pmid: 31088055
[3] Zhang C, Wu D J, Qiu X L. Stimulatory effects of amino acids on γ-polyglutamic acid production by Bacillus subtilis. Scientific Reports, 2018,8(1):17934.
[4] Wu H Y, Li J H, Wei J C, et al. Disulfide-crosslinked poly(L-glutamic acid) grafted mesoporous silica nanoparticles and their potential application in drug delivery. Chemical Research in Chinese Universities, 2015,31(5):890-894.
[5] Cao B, Yin J B, Yan S F, et al. Porous scaffolds based on cross-linking of poly(L-glutamic acid). Macromolecular Bioscience, 2011,11(3):427-434.
[6] 王波, 李贵飞, 宗鸿杰, 等. 聚L-谷氨酸光交联水凝胶的制备和性能. 高分子材料科学与工程, 2020,36(1):126-133.
Wang B, Li G F, Zong H J, et al. Fabrication and characterization of photo-crosslinked poly(L-glutamic acid) hydrogels. Polymer Materials Science and Engineering, 2020,36(1):126-133.
[7] Inbaraj B S, Chen B H. In vitro removal of toxic heavy metals by poly(γ-glutamic acid)-coated superparamagnetic nanoparticles. International Journal of Nanomedicine, 2012,7:4419-4432.
doi: 10.2147/IJN.S34396 pmid: 22927758
[8] Mark S S, Crusberg T C, DaCunha C M, et al. A heavy metal biotrap for wastewater remediation using poly-γ-glutamic acid. Biotechnology Progress, 2006,22(2):523-531.
pmid: 16599572
[9] Cao M F, Song C J, Jin Y H, et al. Synthesis of poly (γ-glutamic acid) and heterologous expression of pgsBCA genes. Journal of Molecular Catalysis B: Enzymatic, 2010,67(1-2):111-116.
[10] Cava F, Lam H, de Pedro M A, et al. Emerging knowledge of regulatory roles of D-amino acids in bacteria. Cellular and Molecular Life Sciences, 2011,68(5):817-831.
pmid: 21161322
[11] Cai D B, Chen Y Z, He P H, et al. Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnology and Bioengineering, 2018,115(10):2541-2553.
pmid: 29940069
[12] Gao W, He Y, Zhang F, et al. Metabolic engineering of Bacillus amyloliquefaciens LL3 for enhanced poly-γ-glutamic acid synthesis. Microbial Biotechnology, 2019,12(5):932-945.
[13] Hezayen F F, Rehm B H, Tindall B J, et al. Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov, a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). International Journal of Systematic and Evolutionary Microbiology, 2001,51(3):1133-1142.
[14] Niemetz R, Kärcher U, Kandler O, et al. The cell wall polymer of the extremely halophilic archaeon natronococcus occultus. European Journal of Biochemistry, 1997,249(3):905-911.
doi: 10.1111/j.1432-1033.1997.00905.x pmid: 9395342
[15] Ashiuchi M, Kamei T, Misono H. Poly-γ-glutamate synthetase of Bacillus subtilis. Journal of Molecular Catalysis B: Enzymatic, 2003,23(2-6):101-106.
[16] Pérez-Camero G, Congregado F, Bou J J, et al. Biosynthesis and ultrasonic degradation of bacterial poly(γ-glutamic acid). Biotechnology and Bioengineering, 1999,63(1):110-115.
pmid: 10099586
[17] Wu Q, Xu H, Xu L, et al. Biosynthesis of poly(γ-glutamic acid) in Bacillus subtilis NX-2: regulation of stereochemical composition of poly(γ-glutamic acid). Process Biochemistry, 2006,41(7):1650-1655.
[18] Halmschlag B, Steurer X, Putri S P, et al. Tailor-made poly-γ-glutamic acid production. Metabolic Engineering, 2019,55:239-248.
doi: 10.1016/j.ymben.2019.07.009 pmid: 31344452
[19] 程慧, 陈园园, 朱亚鑫, 等. 谷氨酸棒杆菌一步法发酵糖质原料生产γ-聚谷氨酸. 生物工程学报, 2020,36(2):295-308.
Cheng H, Chen Y Y, Zhu Y X, et al. Poly-γ-glutamic acid production in Corynebacterium glutamicum using sugar by one-step fermentation. Chinese Journal of Biotechnology, 2020,36(2):295-308.
[20] Xu G Q, Zha J, Cheng H, et al. Engineering Corynebacterium glutamicum for the de novo biosynthesis of tailored poly-γ-glutamic acid. Metabolic Engineering, 2019,56:39-49.
[21] Lam H, Oh D C, Cava F, et al. D-amino acids govern stationary phase cell wall remodeling in bacteria. Science, 2009,325(5947):1552-1555.
doi: 10.1126/science.1178123 pmid: 19762646
[22] Caparros M, Pisabarro A G, Depedro M A. Effect of D-amino acids on structure and synthesis of peptidoglycan in Escherichia coli. Journal of Bacteriology, 1992,174(17):5549-5559.
pmid: 1512190
[23] Stabler N, Oikawa T, Bott M, et al. Corynebacterium glutamicum as a host for synthesis and export of D-amino acids. Journal of Bacteriology, 2011,193(7):1702-1709.
pmid: 21257776
[24] Sha Y Y, Huang Y Y, Zhu Y F, et al. Efficient biosynthesis of low-molecular-weight poly-γ-glutamic acid based on stereochemistry regulation in Bacillus amyloliquefaciens. ACS Synthetic Biology, 2020,9(6):1395-1405.
doi: 10.1021/acssynbio.0c00080 pmid: 32353226
[25] Espah Borujeni A, Salis H M. Translation initiation is controlled by RNA folding kinetics via a ribosome drafting mechanism. Journal of the American Chemical Society, 2016,138(22):7016-7023.
[26] Espah Borujeni A, Cetnar D, Farasat I, et al. Precise quantification of translation inhibition by mRNA structures that overlap with the ribosomal footprint in N-terminal coding sequences. Nucleic Acids Research, 2017,45(9):5437-5448.
pmid: 28158713
[27] Salis H M, Mirsky E A, Voigt C A. Automated design of synthetic ribosome binding sites to control protein expression. Nature Biotechnology, 2009,27(10):946-950.
doi: 10.1038/nbt.1568 pmid: 19801975
[28] Volkenborn K, Kuschmierz L, Benz N, et al. The length of ribosomal binding site spacer sequence controls the production yield for intracellular and secreted proteins by Bacillus subtilis. Microbial Cell Factories, 2020,19(1):12.
doi: 10.1186/s12934-020-1281-z pmid: 31973723
[29] Hollerer S, Papaxanthos L, Gumpinger A C, et al. Large-scale DNA-based phenotypic recording and deep learning enable highly accurate sequence-function mapping. Nature Communications, 2020,11(1):15.
[30] Li N, Zeng W Z, Xu S, et al. Obtaining a series of native gradient promoter-5'-UTR sequences in Corynebacterium glutamicum ATCC 13032. Microbial Cell Factories, 2020,19(1):120.
doi: 10.1186/s12934-020-01376-3 pmid: 32493332
[31] Sha Y Y, Qiu Y B, Zhu Y F, et al. CRISPRI-based dynamic regulation of hydrolase for the synthesis of poly-γ-glutamic acid with variable molecular weights. ACS Synthetic Biology, 2020,9(9):2450-2459.
doi: 10.1021/acssynbio.0c00207 pmid: 32794764
[1] 卜恺璇,周翠霞,路福平,朱传合. 细菌转录起始调控机制*[J]. 中国生物工程杂志, 2021, 41(11): 89-99.
[2] 玄美娟,张晓云,高莹,高丽影,吴佳婧,马梅,王艳梅,寇航,路福平,黎明. 大肠杆菌糖酵解途径和三羧酸循环启动子的表征及其应用 *[J]. 中国生物工程杂志, 2020, 40(6): 20-30.
[3] 胡益波,皮畅钰,张哲,向柏宇,夏立秋. 丝状真菌蛋白表达系统研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 94-104.
[4] 安明晖,田文,韩晓旭,尚红. 表达HIV单链抗体的重组乳酸杆菌的构建及表型分析 *[J]. 中国生物工程杂志, 2019, 39(10): 1-8.
[5] 史超硕,李登科,曹雪,袁航,张钰文,于江悦,路福平,李玉. 两个不同启动子及其组合对碱性蛋白酶AprE异源表达的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 17-23.
[6] 黄宇,黄书婷,张夕梅,刘堰. 稀有鮈鲫HSP70基因启动子的克隆及功能分析[J]. 中国生物工程杂志, 2019, 39(10): 9-16.
[7] 李亚芳,赵颖慧,刘赛宝,王伟,曾为俊,王金泉,陈洪岩,孟庆文. 鸡OV启动子表达HA对禽流感病毒攻击提供完全保护 *[J]. 中国生物工程杂志, 2018, 38(7): 67-74.
[8] 王嘉祯,姚伦广,王峰,阚云超,罗金萍,黄倩倩,段建平. 家蚕中肠特异启动子P56的克隆及活性分析 *[J]. 中国生物工程杂志, 2018, 38(2): 13-17.
[9] 张玲,王男,金吕华,林荣,杨海麟. 双启动子促进亮氨酸脱氢酶在Bacillus subtilis中表达及发酵研究 *[J]. 中国生物工程杂志, 2018, 38(12): 21-31.
[10] 黄鹏,阎丽萍,张宁,石金磊. 利用GAP启动子在毕赤酵母中组成型表达人鹅型溶菌酶2 *[J]. 中国生物工程杂志, 2018, 38(10): 55-63.
[11] 柴文娟,杨杞,李国婧,王瑞刚. 中间锦鸡儿CiMYB15基因正调控拟南芥黄酮代谢 *[J]. 中国生物工程杂志, 2018, 38(10): 8-19.
[12] 聂永强, 马海燕, 马晴雯. 位点特异整合微环DNA的体内制备[J]. 中国生物工程杂志, 2017, 37(7): 80-87.
[13] 夏惠, 刘磊, 王秀, 沈妍秋, 郭雨伦, 梁东. 苹果6-磷酸山梨醇脱氢酶基因启动子逆境诱导表达特性研究[J]. 中国生物工程杂志, 2017, 37(6): 50-55.
[14] 倪璇, 高金欣, 余传金, 刘铜, 李雅乾, 陈捷. 玉米弯孢叶斑病菌clt-1基因生物信息学分析和启动子的功能鉴定[J]. 中国生物工程杂志, 2017, 37(3): 37-42.
[15] 罗枫雪, 李佛生, 姚民, 徐莺. 水稻OsHAK26启动子的克隆及瞬时表达分析[J]. 中国生物工程杂志, 2017, 37(2): 33-39.