Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (12): 82-87    DOI: 10.13523/j.cb.2010002
综述     
类器官的构建与应用进展
何询1,**(),张鹏2,张俊祥3
1深圳未名新鹏生物医药有限公司 北京 518057
2湖南师范大学生命科学学院动物多肽药物创制国家地方联合工程实验室 长沙 410081
3北京北大未名生物工程集团有限公司 北京 100085
Progress in the Construction and Application of Organoids
HE Xun1,**(),ZHANG Peng2,ZHANG Jun-xiang3
1 Shenzhen Sinobioway XinPeng biomedicine co., LTD, Beijing 518057, China
2 National Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University,Changsha 410081, China
3 SINOBIOWAY GROUP CO., LTD, Beijing 100085, China
 全文: PDF(405 KB)   HTML
摘要:

类器官是在体外经由干细胞驱动的, 形成具有来源器官显微解剖特征的多细胞三维结构且能自我更新的微组织。类器官能分化产生器官特异性的多种细胞类型,能重现对应器官的部分功能和空间架构,它的诞生为生命医学研究和临床应用注入了新动能,在癌症基础与临床研究、再生医学等领域表现出广阔的应用前景。对近些年国内外类器官研究进展进行综述,介绍其构建过程与培养体系,并详细阐述其作为体外研究模型的优缺点,为基于类器官的科学研究与应用提供了参考。

关键词: 类器官肿瘤构建    
Abstract:

Organoids are driven by stem cells in vitro to form multicellular three-dimensional structures with the micro-anatomical and self-renewing characteristics of the source organs. Organoids produce organ-specific cell types that can reproduce part of the function and spatial structure of the corresponding organs. They promote the development of life medicine research and have shown broad application prospects in cancer basic and clinical research, regenerative medicine and other fields. This review summarizes the research progress of organoids in recent years, including introducing its construction process and culture system and expounding its advantages and disadvantages as an in vitro research model, which provides a reference for scientific research and application based on organoids.

Key words: Organoid    Tumor    Construction
收稿日期: 2020-10-10 出版日期: 2021-01-14
ZTFLH:  Q819  
通讯作者: 何询     E-mail: hexun168@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
何询
张鹏
张俊祥

引用本文:

何询,张鹏,张俊祥. 类器官的构建与应用进展[J]. 中国生物工程杂志, 2020, 40(12): 82-87.

HE Xun,ZHANG Peng,ZHANG Jun-xiang. Progress in the Construction and Application of Organoids. China Biotechnology, 2020, 40(12): 82-87.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2010002        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I12/82

组织类型 组织来源 干细胞培养主要因子 干细胞分化因子
成年人 EGF, Noggin,R-spondin,Wnt-3A,FGF-10 EGF, R-spondin
小肠 成年人 EGF, Noggin,R-spondin,Wnt-3A,TGF-β和p38抑制剂 EGF, Noggin,R-spondin,TGF-β抑制剂
结肠 成年人 EGF, Noggin,R-spondin,Wnt-3A,TGF-β和p38的抑制剂 EGF, Noggin,R-spondin,TGF-β抑制剂
胰腺 成年人 EGF, Noggin,R-spondin,Wnt-3A,FGF-10,TGF-β抑制剂和烟酰胺 未见报导
成年人 EGF, Noggin,R-spondin,Wnt-3A,FGF-10,TGF-β的抑制剂,烟酰胺和毛喉素 EGF, Noggin,FGF-10,TGF-β抑制剂,Notch抑制剂和BMP7
表1  部分不同组织源性类器官培养所需因子
特征 癌症细胞系 条件性重编程 成体干细胞来源的类器官 PDTX
生物库的建立 - ++ +++ -
3D生长特性 ± ± ++ +++
体外癌症表型的保留度 - - ++ +++
体外基因型的保留度 ± ++ ++ ++
正常对照 - ++ +++ -
低通量的药物筛选 +++ +++ +++ +
高通量的药物筛选 +++ +++ ++ -
表2  临床前癌症模型在抗癌药物筛选应用中的主要特征的比较
[1] Sato T, Vries R G, Snippert H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009,459(7244):262-265.
pmid: 19329995
[2] Sato T, Stange D E, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology, 2011,141(5):1762-1772.
doi: 10.1053/j.gastro.2011.07.050 pmid: 21889923
[3] Fatehullah A, Tan S H, Barker N. Organoids as an in vitro model of human development and disease. Nature Cell Biology, 2016,18(3):246-254.
doi: 10.1038/ncb3312 pmid: 26911908
[4] Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer, 2018,18(7):407-418.
doi: 10.1038/s41568-018-0007-6 pmid: 29692415
[5] Shamir E R, Ewald A J. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol, 2014,15(10):647-664.
pmid: 25237826
[6] Stingl J, Eaves C J, Zandieh I, et al. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat, 2001,67(2), 93-109.
pmid: 11519870
[7] Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science, 2013,340(6137):1190-1194.
pmid: 23744940
[8] Korinek V, Barker N, Moerer P. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet, 1998,19(4):379-383.
doi: 10.1038/1270 pmid: 9697701
[9] Pinto D, Gregorieff A, Begthel H, et al. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev, 2003,17(14):1709-1713.
doi: 10.1101/gad.267103 pmid: 12865297
[10] Haramis A-P G, Begthel H, Maaike van den B, et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science, 2004,303(5664), 1684-1686.
pmid: 15017003
[11] Dignass A U, Sturm A. Peptide growth factors in the intestine. Eur J Gastroenterol Hepatol, 2001,13(7), 763-770.
doi: 10.1097/00042737-200107000-00002 pmid: 11474304
[12] Sato T Clevers H. SnapShot: growing organoids from stem cells. Cell, 2015, 161(7):1700-1700.e1.
doi: 10.1016/j.cell.2015.05.027 pmid: 26073942
[13] Yuki O, Sato T. Intestinal tumor in a dish. Front Med (Lausanne), 2014,1:10-14.
[14] Hisha H, Tanaka T, Kanno S, et al. Establishment of a novel lingual organoid culture system: generation of organoids having mature keratinized epithelium from adult epithelial stem cells. Sci Rep, 2013,3:3224.
doi: 10.1038/srep03224 pmid: 24232854
[15] Barker N, Huch M, Kujala , et al. Lgr5+ve stem cells drive self-renewal in the stomach and build longlived gastric units in vitro. Cell Stem Cell, 2010,6(1):25-36.
pmid: 20085740
[16] Stange D, Koo B K, Huch M, et al. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell, 2013,155(2):357-368.
doi: 10.1016/j.cell.2013.09.008 pmid: 24120136
[17] Boj S F, Hwang C, Baker L, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell, 2015,160(1-2):324-338.
[18] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors]. Cell, 2006,126(4):663-676.
doi: 10.1016/j.cell.2006.07.024 pmid: 16904174
[19] Noguchi TAK, Ninomiya N, Sekine M, et al. Generation of stomach tissue from mouse embryonic stem cells. Nat. Cell Biol, 2015,17(8):984-993.
[20] Koehler K R, Mikosz A M, Molosh A I, et al. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature, 2013,500(7461):217-221.
doi: 10.1038/nature12298 pmid: 23842490
[21] Marx V. Cell-line authentication demystified. Nat Methods, 2014,11(5):483-488.
doi: 10.1038/nmeth.2932 pmid: 24781320
[22] Masters J R, Stacey G N. Changing medium and passaging cell lines. Nat Protocols, 2007,2(9):2276-2284.
doi: 10.1038/nprot.2007.319
[23] Liu X, Ory V, Chapman S, et al. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am J Pathol, 2012,180(2):599-607.
doi: 10.1016/j.ajpath.2011.10.036 pmid: 22189618
[24] Ben-David U, Ha G, Tseng Y Y, et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet, 2017,49(11):1567-1575.
doi: 10.1038/ng.3967 pmid: 28991255
[25] Byrne A T, Alférez D G, Amant F, et al. Interrogating open issues in cancer medicine with patient-derived xenografts. Nat Rev Cancer, 2017,17(10):254-268.
[26] Wetering M, Francies H E, Francis J M, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell, 2015,161(4):933-945.
doi: 10.1016/j.cell.2015.03.053 pmid: 25957691
[27] Sachs N, Ligh J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell, 2018,172(1-2):373-386.
doi: 10.1016/j.cell.2017.11.010 pmid: 29224780
[28] Barretina J, Caponigro G, Stransky N, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012,483(7391):603-607.
doi: 10.1038/nature11003 pmid: 22460905
[29] Kamb A. What’s wrong with our cancer models? Nat Rev Drug Discov, 2005,4(2):161-165.
doi: 10.1038/nrd1635 pmid: 15688078
[30] Caponigro G, Sellers W R. Advances in the preclinical testing of cancer therapeutic hypotheses. Nat Rev Drug Discov, 2011,10(3), 179-187.
doi: 10.1038/nrd3385 pmid: 21358737
[31] Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science, 2018,359(6378):920-926.
doi: 10.1126/science.aao2774 pmid: 29472484
[32] Shenoy T R, Boysen G, Wang M Y, et al. CHD1 loss sensitizes prostate cancer to DNA damaging therapy by promoting error prone double-strand break repair. Ann Oncol, 2017,28(7):1495-1507.
doi: 10.1093/annonc/mdx165 pmid: 28383660
[33] Dekkers J F, Wiegerinck C L, de Jonge H R, et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med, 2013,19(7):939-945.
doi: 10.1038/nm.3201 pmid: 23727931
[34] Dekkers J F, Berkers G, Kruisselbrink E, et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fifibrosis. Sci Transl Med, 2016;8(344):344ra384.
[35] Yui S, Nakamura T, Sato T, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat Med, 2012; 18(4):618e623.
[36] Yin Y B, Bijvelds M, Wen D, et al. Modeling rotavirus infection and antiviral therapy using primary intestinal organoids. Antiviral Res, 2015,123:120-131.
doi: 10.1016/j.antiviral.2015.09.010 pmid: 26408355
[37] Bartfeld S, Bayram T, van de Wetering M, et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology, 2015, 148(1): 126-136.e6.
doi: 10.1053/j.gastro.2014.09.042 pmid: 25307862
[38] Salama N R, Hartung M L, Muller A. Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat Rev Microbiol, 2013,11(6):385-399.
doi: 10.1038/nrmicro3016 pmid: 23652324
[39] Scanu T, Spaapen R M, Bakker J M, et al. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host & Microbe, 2015,17(6):763-774.
doi: 10.1016/j.chom.2015.05.002 pmid: 26028364
[40] Liu H, Wang Y, Cui K, et al. Advances in hydrogels in organoids and organs-on-a-chip. Adv Mater, 2019,31(50):e1902042.
doi: 10.1002/adma.201902042 pmid: 31282047
[41] Gjorevski N, Sachs N, Manfrin A, et al. Designer matrices for intestinal stem cell and organoid culture. Nature, 2016,539(7630):560-564.
doi: 10.1038/nature20168 pmid: 27851739
[42] Neal J T, Li X, Zhu J, et al. Organoid modeling of the tumor immune microenvironment. Cell, 2018,175(7):1972-1988.
doi: 10.1016/j.cell.2018.11.021 pmid: 30550791
[43] Zhang Y G, Sun J. Study bacteria-host interactions using intestinal organoids. Methods Mol Biol, 2016,1576:249-254.
doi: 10.1007/7651_2016_6 pmid: 27539461
[44] Weeber F, Ooft S N, Dijkstra K K, et al. Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem Biol, 2017,24(9):1092-1100.
doi: 10.1016/j.chembiol.2017.06.012 pmid: 28757181
[1] 赵梦泽,李凤智,王鹏银,李剑,徐寒梅. PD-L1和VEGF双靶点联合阻断治疗的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 71-77.
[2] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[3] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[4] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[5] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[6] 杨威,宋方祥,王帅,张黎,王红霞,李焱. 药物输送系统中Janus纳米粒子的制备及应用 *[J]. 中国生物工程杂志, 2020, 40(7): 70-81.
[7] 张保惠,熊华龙,张天英,袁权. 基于水疱性口炎病毒(VSV)的溶瘤病毒研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 53-62.
[8] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[9] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[10] 钱颖,钱晨,白晓庆,王晶晶. 免疫佐剂在肿瘤免疫疗法中的应用进展 *[J]. 中国生物工程杂志, 2020, 40(3): 96-103.
[11] 肖雪筠,唐奇,新华·那比. 靶向肿瘤微环境的CAR-T治疗研究*[J]. 中国生物工程杂志, 2020, 40(12): 67-74.
[12] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[13] 彭贤贵,杨武晨,李佳,苟阳,王平,刘思恒,张云,李艺,张曦. 细胞形态相关技术在血液系统肿瘤中的应用 *[J]. 中国生物工程杂志, 2019, 39(9): 84-90.
[14] 刘艳,戴鹏,朱运峰. 外泌体作为肿瘤标志物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(8): 74-79.
[15] 张裕丰,谢梦佳,周舒蕾,徐玲玲,赵铁军. 细胞穿膜肽在肿瘤靶向治疗及疾病诊断中的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 48-54.