Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (12): 75-81    DOI: 10.13523/j.cb.2007049
综述     
聚多巴胺的表面修饰功能在组织工程的应用进展*
严格,乔韡华,曹红,史嘉玮,董念国()
华中科技大学同济医学院附属协和医院心脏大血管外科 武汉 430022
Application of Surface Modification of Polydopamine in Tissue Engineering
YAN Ge,QIAO Wei-hua,CAO Hong,SHI Jia-wei,DONG Nian-guo()
Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College,Huazhong University of Science and Technology, Wuhan 430022,China
 全文: PDF(962 KB)   HTML
摘要:

聚多巴胺作为贻贝的仿生材料,可由多巴胺在碱性环境中自发形成。由于其较好的黏附特性以及组织相容性,在生命科学等领域有着广泛的应用。将聚多巴胺对材料进行表面修饰,既可以保护材料免受强氧化剂、酸碱等外界的侵蚀,也可以通过表面改性赋予材料新的功能,使其在各领域发挥更好的作用。对聚多巴胺的制备原理、生物性能,以及近年来在组织工程领域(骨组织、软骨组织、硬脑膜组织、血管组织、耳组织)的运用进行综述,以期为后续聚多巴胺作为组织工程黏附材料的研究提供参考。

关键词: 聚多巴胺表面修饰组织工程    
Abstract:

As a biomimetic material of mussel, polydopamine can be formed spontaneously by dopamine in alkaline environment. Because of its good adhesion properties and histocompatibility, it has a wide range of applications in life sciences and other fields. Surface modification of the material with polydopamine can not only protect the material from external corrosion such as strong oxidants, acids and alkalis, but also give the material new functions through surface modification, making it play a better role in various fields. The preparation principle, biological properties of polydopamine and its application in tissue engineering (bone tissue, cartilage tissue, dural tissue, blood vessel tissue, ear tissue) in recent years are reviewed, in order to provide reference for the follow-up study of polydopamine as a tissue engineering adhesive material.

Key words: Polydopamine    Surface modification    Tissue engineering
收稿日期: 2020-07-29 出版日期: 2021-01-14
ZTFLH:  Q819  
基金资助: * 国家自然科学基金资助项目(81930052);国家自然科学基金资助项目(81900351)
通讯作者: 董念国     E-mail: dongnianguo@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
严格
乔韡华
曹红
史嘉玮
董念国

引用本文:

严格,乔韡华,曹红,史嘉玮,董念国. 聚多巴胺的表面修饰功能在组织工程的应用进展*[J]. 中国生物工程杂志, 2020, 40(12): 75-81.

YAN Ge,QIAO Wei-hua,CAO Hong,SHI Jia-wei,DONG Nian-guo. Application of Surface Modification of Polydopamine in Tissue Engineering. China Biotechnology, 2020, 40(12): 75-81.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2007049        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I12/75

图1  PDA“真黑素”模型的合成原理图
图2  在材料表面涂覆PDA,并共价接枝含有胺、硫醇和咪唑等官能团的亲核分子
[1] Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007,318(5849):426-430.
doi: 10.1126/science.1147241 pmid: 17947576
[2] Zhang C, Wu B, Zhou Y, et al. Mussel-inspired hydrogels: from design principles to promising applications. Chem Soc Rev, 2020,49(11):3605-3637.
doi: 10.1039/c9cs00849g pmid: 32393930
[3] Pandey N, Soto-Garcia L F, Liao J, et al. Mussel-inspired bioadhesives in healthcare: design parameters, current trends, and future perspectives. Biomater Sci, 2020,8(5):1240-1255.
pmid: 31984389
[4] Kang S M, Hwang N S, Yeom J, et al. One-step multipurpose surface functionalization by adhesive catecholamine. Adv Funct Mater, 2012,22(14):2949-2955.
pmid: 23580891
[5] Huang H, Liu M, Xu D, et al. Facile fabrication of glycosylated and PEGylated carbon nanotubes through the combination of mussel inspired chemistry and surface-initiated ATRP. Mater Sci Eng C Mater Biol Appl, 2020,106:110157.
pmid: 31753361
[6] Hu J, Yang L, Yang P, et al. Polydopamine free radical scavengers. Biomater Sci, 2020,8(18):4940-4950.
pmid: 32807998
[7] Wang Z, Zou Y, Li Y, et al. Metal-containing polydopamine nanomaterials: catalysis, energy, and theranostics. Small, 2020,16(18):e1907042.
[8] Liu H, Qu X, Tan H, et al. Role of polydopamine’s redox-activity on its pro-oxidant, radical-scavenging, and antimicrobial activities. Acta Biomater, 2019,88:181-196.
doi: 10.1016/j.actbio.2019.02.032 pmid: 30818052
[9] Srivastava A K, Roy Choudhury S, Karmakar S. Melatonin/polydopamine nanostructures for collective neuroprotection-based Parkinson’s disease therapy. Biomater Sci, 2020,8(5):1345-1363.
doi: 10.1039/c9bm01602c pmid: 31912833
[10] Jia L, Han F, Wang H, et al. Polydopamine-assisted surface modification for orthopaedic implants. J Orthop Translat, 2019,17:82-95.
doi: 10.1016/j.jot.2019.04.001 pmid: 31194087
[11] Liu D, Ma L, Liu L, et al. Polydopamine-encapsulated Fe3O4 with an adsorbed HSP70 inhibitor for improved photothermal inactivation of bacteria. ACS Appl Mater Interfaces, 2016,8(37):24455-24462.
doi: 10.1021/acsami.6b08119
[12] Kang H, Zhang X, Li L, et al. Polydopamine and poly(dimethylsiloxane) modified superhydrophobic fiberglass membranes for efficient water-in-oil emulsions separation. J Colloid Interface Sci, 2020,559:178-185.
doi: 10.1016/j.jcis.2019.10.016 pmid: 31627141
[13] Jing X, Mi H Y, Lin Y J, et al. Highly stretchable and biocompatible strain sensors based on mussel-inspired super-adhesive self-healing hydrogels for human motion monitoring. ACS Appl Mater Interfaces, 2018,10(24):20897-20909.
doi: 10.1021/acsami.8b06475 pmid: 29863322
[14] Tao W, Zeng X, Wu J, et al. Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects. Theranostics, 2016,6(4):470-484.
doi: 10.7150/thno.14184 pmid: 26941841
[15] Wang W, Tang Z, Zhang Y, et al. Mussel-Inspired polydopamine: the bridge for targeting drug delivery system and synergistic cancer treatment. Macromol Biosci, 2020,20(10):e2000222.
doi: 10.1002/mabi.202000222 pmid: 32761887
[16] Farokhi M, Mottaghitalab F, Saeb M R, et al. Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. J Control Release, 2019,309:203-219.
doi: 10.1016/j.jconrel.2019.07.036 pmid: 31362077
[17] Kuang Y, Zhang Y, Zhao Y, et al. Dual-Stimuli-responsive multifunctional Gd2Hf2O7 nanoparticles for MRI-guided combined chemo-/photothermal-/radiotherapy of resistant tumors. ACS Appl Mater Interfaces, 2020,12(32):35928-35939.
doi: 10.1021/acsami.0c09422 pmid: 32686939
[18] Xu X, Liu X, Tan L, et al. Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods. Acta Biomater, 2018,77:352-364.
doi: 10.1016/j.actbio.2018.07.030 pmid: 30030176
[19] Choi H, Cho S H, Hahn S K. Urease-powered polydopamine nanomotors for intravesical therapy of bladder diseases. ACS Nano, 2020,14(6):6683-6692.
doi: 10.1021/acsnano.9b09726 pmid: 32491832
[20] Jin A, Wang Y, Lin K, et al. Nanoparticles modified by polydopamine: working as “drug”carriers. Bioact Mater, 2020; 5(3):522-541.
doi: 10.1016/j.bioactmat.2020.04.003 pmid: 32322763
[21] Sarkar S Levi-Polyachenko N. Conjugated polymer nano-systems for hyperthermia, imaging and drug delivery. Adv Drug Deliv Rev, 2020, 163-164:40-64.
doi: 10.1016/s0169-409x(99)00063-0 pmid: 10699312
[22] Ding F, Gao X, Huang X, et al. Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy. Biomaterials, 2020,245:119976.
doi: 10.1016/j.biomaterials.2020.119976 pmid: 32213362
[23] Hauser D, Septiadi D, Turner J, et al. From bioinspired glue to medicine: polydopamine as a biomedical material. Materials, 2020,13(7):1730.
doi: 10.3390/ma13071730
[24] Jin A, Wang Y, Lin K, et al. Nanoparticles modified by polydopamine: working as “drug” carriers. Bioact Mater, 2020,5(3):522-541.
doi: 10.1016/j.bioactmat.2020.04.003 pmid: 32322763
[25] Ghorbani F, Ghalandari B, Khan A L, et al. Decoration of electrical conductive polyurethane-polyaniline/polyvinyl alcohol matrixes with mussel-inspired polydopamine for bone tissue engineering. Biotechnol Prog, 2020,36(6):e3043.
doi: 10.1002/btpr.3043 pmid: 32592333
[26] Liu Y, Han Y, Dong H, et al. Ca2+-mediated surface polydopamine engineering to program dendritic cell maturation. ACS Appl Mater Interfaces, 2020,12(3):4163-4173.
doi: 10.1021/acsami.9b20997 pmid: 31891476
[27] Cheng W, Zeng X, Chen H, et al. Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine. ACS Nano, 2019,13(8):8537-8565.
doi: 10.1021/acsnano.9b04436
[28] Bernsmann F, Ball V, Addiego F, et al. Dopamine-melanin film deposition depends on the used oxidant and buffer solution. Langmuir, 2011,27(6):2819-2825.
doi: 10.1021/la104981s pmid: 21332218
[29] Kord Forooshani P, Lee B P. Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J Polym Sci A Polym Chem, 2017,55(1):9-33.
doi: 10.1002/pola.28368 pmid: 27917020
[30] Dreyer D R, Miller D J, Freeman B D, et al. Elucidating the structure of poly(dopamine). Langmuir, 2012,28(15):6428-6435.
doi: 10.1021/la204831b pmid: 22475082
[31] Cai J S, Huang J Y, Ge M Z, et al. Immobilization of Pt nanoparticles via rapid and reusable electropolymerization of dopamine on TiO2 nanotube arrays for reversible SERS substrates and nonenzymatic glucose sensors. Small, 2017,13(19). DOI: 10.1002/smll.201604240.
doi: 10.1002/smll.201604240 pmid: 28266808
[32] Wang J L, Li B C, Li Z J, et al. Electropolymerization of dopamine for surface modification of complex-shaped cardiovascular stents. Biomaterials, 2014,35(27):7679-7689.
doi: 10.1016/j.biomaterials.2014.05.047 pmid: 24929615
[33] Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev, 2014,114(9):5057-5115.
doi: 10.1021/cr400407a pmid: 24517847
[34] Tan Y, Deng W, Li Y, et al. Polymeric bionanocomposite cast thin films with in situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cell applications. J Phys Chem B, 2010,114(15):5016-5024.
doi: 10.1021/jp100922t pmid: 20337455
[35] Della Vecchia N F, Luchini A, Napolitano A, et al. Tris buffer modulates polydopamine growth, aggregation, and paramagnetic properties. Langmuir, 2014,30(32):9811-9818.
doi: 10.1021/la501560z pmid: 25066905
[36] Ju K Y, Lee Y, Lee S, et al. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules, 2011,12(3):625-632.
doi: 10.1021/bm101281b
[37] Ball V, Del Frari D, Toniazzo V, et al. Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: insights in the polydopamine deposition mechanism. J Colloid Interface Sci, 2012,386(1):366-372.
doi: 10.1016/j.jcis.2012.07.030 pmid: 22874639
[38] Jun D R, Moon S K, Choi S W. Uniform polydimethylsiloxane beads coated with polydopamine and their potential biomedical applications. Colloids and Surfaces B: Biointerfaces, 2014,121:395-399.
doi: 10.1016/j.colsurfb.2014.06.027 pmid: 24993068
[39] Chung E J, Jun D R, Kim D W, et al. Prevention of polydimethylsiloxane microsphere migration using a mussel-inspired polydopamine coating for potential application in injection therapy. PLoS One, 2017,12(11):e0186877.
[40] Li Q, Sun L, Zhang L, et al. Polydopamine-collagen complex to enhance the biocompatibility of polydimethylsiloxane substrates for sustaining long-term culture of L929 fibroblasts and tendon stem cells. J Biomed Mater Res A, 2018,106(2):408-418.
doi: 10.1002/jbm.a.36254 pmid: 28971550
[41] Xue P, Li Q, Li Y, et al. Surface modification of poly(dimethylsiloxane) with polydopamine and hyaluronic acid to enhance hemocompatibility for potential applications in medical implants or devices. ACS Applied Materials & Interfaces, 2017,9(39):33632-33644.
doi: 10.1021/acsami.7b10260 pmid: 28901742
[42] Guo Q, Chen J, Wang J, et al. Recent progress in synthesis and application of mussel-inspired adhesives. Nanoscale, 2020,12(3):1307-1324.
doi: 10.1039/c9nr09780e pmid: 31907498
[43] Kim R, Nam Y. Electrochemical layer-by-layer approach to fabricate mechanically stable platinum black microelectrodes using a mussel-inspired polydopamine adhesive. Journal of Neural Engineering, 2015,12(2):026010.
doi: 10.1088/1741-2560/12/2/026010 pmid: 25738544
[44] Hu Y, Dan W, Xiong S, et al. Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi-natural tissue engineering scaffold. Acta Biomater, 2017,47:135-148.
doi: 10.1016/j.actbio.2016.10.017 pmid: 27744068
[45] Ryu J H, Lee Y, Kon W H G, et al. Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules, 2011,12(7):2653-2659.
doi: 10.1021/bm200464x pmid: 21599012
[46] Zhang H, Bré L P, Zhao T, et al. Mussel-inspired hyperbranched poly(amino ester) polymer as strong wet tissue adhesive. Biomaterials, 2014,35(2):711-719.
doi: 10.1016/j.biomaterials.2013.10.017 pmid: 24140046
[47] Zhou S, Chang Q, Lu F, et al. Injectable mussel-inspired immobilization of platelet-rich plasma on microspheres bridging adipose micro-tissues to improve autologous fat transplantation by controlling release of PDGF and VEGF, angiogenesis, stem cell migration. Adv Healthc Mater, 2017,6(22). DOI: 10.1002/adhm.201700131.
doi: 10.1002/adhm.201700131 pmid: 28783874
[48] Yang K, Lee J S, Kim J, et al. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials, 2012,33(29):6952-6964.
doi: 10.1016/j.biomaterials.2012.06.067 pmid: 22809643
[49] Zhang Y, Wang F, Huang Q, et al. Layer-by-layer immobilizing of polydopamine-assisted ε-polylysine and gum Arabic on titanium: Tailoring of antibacterial and osteogenic properties. Mater Sci Eng C Mater Biol Appl, 2020,110:110690.
doi: 10.1016/j.msec.2020.110690 pmid: 32204005
[50] Cheng C, Nie S, Li S, et al. Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. J Mater Chem B, 2013,1:265-275.
doi: 10.1039/c2tb00025c pmid: 32260750
[51] Sileika T S, Kim H D, Maniak P, et al. Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components. ACS Appl Mater Interfaces, 2011,3:4602-4610.
doi: 10.1021/am200978h pmid: 22044029
[52] Li F, Feng Y, Yang L, et al. A selective novel non-enzyme glucose amperometric biosensor based on lectin-sugar binding on thionine modified electrode. Biosens Bioelectron, 2011,26:2489-2494.
doi: 10.1016/j.bios.2010.10.040 pmid: 21126864
[53] Reddy R, Reddy N. Biomimetic approaches for tissue engineering.Journal of Biomaterials Science, Polymer Edition, 2018,29(14):1667-1685.
doi: 10.1080/09205063.2018.1500084 pmid: 29998794
[54] Han L, Jiang Y, Lv C, et al. Mussel-inspired hybrid coating functionalized porous hydroxyapatite scaffolds for bone tissue regeneration. Colloids Surf B Biointerfaces, 2019,179:470-478.
doi: 10.1016/j.colsurfb.2019.04.024 pmid: 31005742
[55] Li Y, Yang W, Li X, et al. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating. ACS Appl Mater Interfaces, 2015,7:5715-5724.
doi: 10.1021/acsami.5b00331 pmid: 25711714
[56] Tan H C, Poh C K, Cai Y, et al. Covalently grafted BMP‐7 peptide to reduce macrophage/monocyte activity: an in vitro study on cobalt chromium alloy. Biotechnology and Bioengineering, 2013,110(3):969-979.
doi: 10.1002/bit.24756
[57] Tsai W B, Chen W T, Chien H W, et al. Poly(dopamine) coating of scaffolds for articular cartilage tissue engineering. Acta Biomater, 2011,7(12):4187-4194.
doi: 10.1016/j.actbio.2011.07.024 pmid: 21839186
[58] Davoudi P, Assadpour S, Derakhshan M A, et al. Biomimetic modification of polyurethane-based nanofibrous vascular grafts: a promising approach towards stable endothelial lining. Mater Sci Eng C Mater Biol Appl, 2017,80:213-221.
doi: 10.1016/j.msec.2017.05.140 pmid: 28866159
[59] Schendzielorz P, Rak K, Radeloff K, et al. A polydopamine peptide coating enables adipose-derived stem cell growth on the silicone surface of cochlear implant electrode arrays. J Biomed Mater Res, 2018,106:1431-1438.
doi: 10.1002/jbm.v106.4
[60] Batul R, Tamanna T, Khaliq A, et al. Recent progress in the biomedical applications of polydopamine nanostructures. Biomater Sci, 2017,5(7):1204-1229.
doi: 10.1039/c7bm00187h pmid: 28594019
[61] Park J, Brust T F, Lee H J, et al. Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers. ACS Nano, 2014,8(4):3347-3356.
doi: 10.1021/nn405809c pmid: 24628245
[62] Lee H, Rho J, Messersmith P B. Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater Weinheim, 2009,21(4):431-434.
doi: 10.1002/adma.v21:4
[63] Fan H, Yu X, Liu Y, et al. Folic acid-polydopamine nanofibers show enhanced ordered-stacking via π-π interactions. Soft Matter, 2015,11(23):4621-4629.
doi: 10.1039/c5sm00732a pmid: 25959650
[64] Yu X, Fan H, Wang L, et al. Formation of polydopamine nanofibers with the aid of folic acid. Angew Chem, 2014,53(46):12600-12604.
[65] Wu C, Guan X, Xu J, et al. Highly efficient cascading synergy of cancer photo-immunotherapy enabled by engineered graphene quantum dots/photosensitizer/CpG oligonucleotides hybrid nanotheranostics. Biomaterials, 2019,205:106-119.
doi: 10.1016/j.biomaterials.2019.03.020 pmid: 30913486
[66] Wu J, Cao L, Liu Y, et al. Functionalization of silk fibroin electrospun scaffolds via BMSC affinity peptide grafting through oxidative self-polymerization of dopamine for bone regeneration. ACS Appl Mater Interfaces, 2019,11(9):8878-8895.
doi: 10.1021/acsami.8b22123 pmid: 30777748
[67] Lu X, Shi S, Li H, et al. Magnesium oxide-crosslinked low-swelling citrate-based mussel-inspired tissue adhesives. Biomaterials, 2020,232:119719.
doi: 10.1016/j.biomaterials.2019.119719 pmid: 31901688
[1] 朱帅,金明杰,杨树林. 3D生物打印在软骨修复中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 65-71.
[2] 宋标标,顾奇. 同轴打印小直径组织工程血管*[J]. 中国生物工程杂志, 2021, 41(10): 42-51.
[3] 余幸鸽,林开利. 基于天然水凝胶的生物材料在骨组织工程中的应用*[J]. 中国生物工程杂志, 2020, 40(5): 69-77.
[4] 王元斗,宿烽,李速明. 光交联水凝胶在组织工程中的研究进展[J]. 中国生物工程杂志, 2020, 40(4): 91-96.
[5] 刘子儒,张甜. 聚多巴胺改性聚合物在神经修复中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 57-64.
[6] 武慧蓉,温朝辉. 壳聚糖在神经组织工程中的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 73-77.
[7] 康肸,邓爱鹏,杨树林. 壳聚糖基温敏水凝胶的研究进展[J]. 中国生物工程杂志, 2018, 38(5): 79-84.
[8] 郗来顺,云鹏,王元斗,张冠宏,邢泉生,陈阳生,宿烽. 形状记忆聚合物在组织工程中的应用 *[J]. 中国生物工程杂志, 2018, 38(12): 76-81.
[9] 孙怀远,宋晓康,廖跃华,李晓欧. 压电式微喷技术在细胞打印领域的应用*[J]. 中国生物工程杂志, 2018, 38(12): 82-90.
[10] 李大为, 何进, 何凤利, 刘雅丽, 邓旭东, 叶雅静, 尹大川. 丝素蛋白/壳聚糖复合材料在组织工程中应用的研究进展[J]. 中国生物工程杂志, 2017, 37(10): 111-117.
[11] 罗思施, 汤顺清. 琼脂糖在组织工程中的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 68-74.
[12] 王佃亮. 组织器官三维构建及原位组织工程概念——组织工程连载之四[J]. 中国生物工程杂志, 2014, 34(8): 112-116.
[13] 王佃亮. 种子细胞——组织工程连载之三[J]. 中国生物工程杂志, 2014, 34(7): 108-113.
[14] 王佃亮. 组织工程的诞生与发展——组织工程 连载之一[J]. 中国生物工程杂志, 2014, 34(5): 122-129.
[15] 张志强, 黄向华, 赵林远. 微环境对细胞的影响以及仿生学在组织工程支架中的应用[J]. 中国生物工程杂志, 2014, 34(4): 101-109.