Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (12): 41-48    DOI: 10.13523/j.cb.2009009
技术与方法     
基于DOE设计和氨基酸补加策略提高CHO细胞表达抗CD20单克隆抗体*
孔建涛1,庄英萍1,2,郭美锦1,2,**()
1华东理工大学 生物反应器工程国家重点实验室 上海 200237
2上海生物制造技术协同创新中心 上海 200237
Enhancement of Anti-CD20 Monoclonal Antibody Expression by CHO based on DOE and Amino Acid Supplemental Strategy
KONG Jian-tao1,ZHUANG Ying-ping1,2,GUO Mei-jin1,2,**()
1 State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
2 Shanghai Biological Manufacturing Technology Innovation Center, Shanghai 200237, China
 全文: PDF(7621 KB)   HTML
摘要:

中国仓鼠卵巢细胞(CHO)流加培养生产单克隆抗体是目前主流培养方式,其中环境参数(pH和温度)和营养成分均影响细胞生长、碳氮源代谢和外源蛋白表达,是培养过程中关键的控制参数。采用实验设计(design of experiment,DOE)方法研究培养参数(温度、pH)对CHO细胞生长和抗CD20抗体表达的影响,建立营养限制型氨基酸流加策略,实现抗CD20抗体的高表达。结果表明,温度是影响蛋白质表达的显著因素,35℃有助于提高细胞密度和目标抗CD20抗体表达,而pH对抗CD20表达影响不显著,且温度和pH无交互作用,经DOE预测分析最佳培养条件是温度35℃和pH7.0。在该最佳培养条件下,在培养后期酪氨酸和半胱氨酸的浓度都低于0.1mmol/L。在培养的第2天通过补加1.5mmol/L酪氨酸和1mmol/L半胱氨酸避免营养限制,抗CD20抗体表达水平提高了24.1%,且对蛋白糖型无影响。

关键词: 中国仓鼠卵巢细胞抗CD20单克隆抗体实验设计环境参数流加策略    
Abstract:

Fed-batch culture has been one of main bioprocesses for monoclonal antibody (mAb) production by Chinese hamster ovary (CHO) cells. It has been reported that environmental parameters like temperature and pH and nutritional ingredients are key factors that can influence cell growth, carbon and/or nitrogen source metabolism and foreign protein expression in CHO cell suspension culture. Objective: Effects of culture process parameters (temperature and pH) on cell growth and anti-CD20 antibody expression by CHO cells were investigated based on design of experiment (DOE), and a fed-batch strategy was successfully developed to improve anti-CD20 antibody expression level with amino acid supplementation. The results show that temperature was a key factor for anti-CD20 antibody expression: 35℃was the optimal temperature with an increased cell density and target mAb yield. However, the impact of pH on mAb production by CHO cells was not significant and there were no interaction between pH and temperature. The optimal culture conditions were 35℃ and pH7.0 according to the analysis of DOE predictive profiler. In addition, it found that residual concentrations of tyrosine and cysteine in culture was below 0.1mmol/L at late stage of cultivation process under the optimal culture condition. As such, additional 1.5mmol/L tyrosine and 1mmol/L cysteine were fed on day 2, led to an increase in anti-CD20 antibody titer by 24.1% and no changes in glycosylation of anti-CD20 antibody.

Key words: Chinese hamster ovary cells    Anti-CD20 antibody    Design of experiment    Environmental parameter    Fed-batch strategy
收稿日期: 2020-09-06 出版日期: 2021-01-14
ZTFLH:  Q819  
基金资助: * 国家高新技术研发计划资助项目(2012AA021201)
通讯作者: 郭美锦     E-mail: guo_mj@ecust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孔建涛
庄英萍
郭美锦

引用本文:

孔建涛,庄英萍,郭美锦. 基于DOE设计和氨基酸补加策略提高CHO细胞表达抗CD20单克隆抗体*[J]. 中国生物工程杂志, 2020, 40(12): 41-48.

KONG Jian-tao,ZHUANG Ying-ping,GUO Mei-jin. Enhancement of Anti-CD20 Monoclonal Antibody Expression by CHO based on DOE and Amino Acid Supplemental Strategy. China Biotechnology, 2020, 40(12): 41-48.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2009009        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I12/41

Temp(℃) pH Titer(g/L)
B1 37℃→31℃(Day4) 6.8 0.75
B2 37℃→31℃(Day4) 7.0 0.84
B3 37℃→33℃(Day4) 6.9 1.04
B4 37℃→33℃(Day4) 6.9 1.01
B5 37℃→35℃(Day4) 6.8 1.15
B6 37℃→35℃(Day4) 7.0 1.26
表1  温度和pH 的DOE设计方案和响应变量值
图1  不同温度和pH培养下的CHO细胞生长曲线
图2  DOE分析结果
图3  最佳培养条件下的CHO细胞生长曲线和蛋白质表达
图4  B6反应器培养过程中的酪氨酸和半胱氨酸浓度
氨基酸 IVCD(106cells·d/ml) Qp [mmol/(109cells·d)]
Tyrosine 167.73 0.019
Cysteine 167.73 0.015
表2  反应器培养过程中的氨基酸比消耗速率
图5  反应器中氨基酸补加培养下的细胞生长曲线
图6  反应器中氨基酸补加培养下蛋白质的表达
[1] Werner R G, Noe W, Kopp K, et al. Appropriate mammalian expression systems for biopharmaceuticals. Arzneimittel-Forschung, 1998,48(8):870-880.
pmid: 9748718
[2] Raju T S. Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Current Opinion in Immunology, 2008,20(4):471-478.
doi: 10.1016/j.coi.2008.06.007 pmid: 18606225
[3] Huang Y M, Hu W W, Rustandi E, et al. Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnology Progress, 2010,26(5):1400-1410.
pmid: 20945494
[4] Bollati-Fogolin M, Forno G, Nimtz M, et al. Temperature reduction in cultures of hGM-CSF-expressing CHO cells:Effect on productivity and product quality. Biotechnology Progress, 2005,21(1):17-21.
pmid: 15903236
[5] Yoon S K, Choi S L, Song J Y, et al. Effect of culture pH on erythropoietin production by Chinese Hamster ovary cells grown in suspension at 32.5 and 37.0℃. Biotechnology and Bioengineering, 2005,89(3):345-356.
pmid: 15625678
[6] Jardon M, Garnier A. pH, pCO2, and temperature effect on R-Adenovirus production. Biotechnology Progress, 2003,19(1):202-208.
doi: 10.1021/bp025585a pmid: 12573026
[7] Kaufmann H, Mazur X, Fussenegger M, et al. Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells. Biotechnology and Bioengineering, 1999,63(5):573-582.
doi: 10.1002/(sici)1097-0290(19990605)63:5<573::aid-bit7>3.0.co;2-y pmid: 10397813
[8] Yoon S K, Song J Y, Lee G M. Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnology and Bioengineering, 2003,82(3):289-298.
doi: 10.1002/bit.10566 pmid: 12599255
[9] Xing Z, Kenty B, Koyrakh I, et al. Optimizing amino acid composition of CHO cell culture media for a fusion protein production. Process Biochemistry, 2011,46(7):1423-1429.
[10] Kang S, Mullen J, Miranda L P, et al. Utilization of tyrosine-and histidine-containing dipeptides to enhance productivity and culture viability. Biotechnology and Bioengineering, 2012,109(9):2286-2294.
doi: 10.1002/bit.24507 pmid: 22447498
[11] Xing Z Z, Li Z J, Chow V, et al. Identifying inhibitory threshold values of repressing metabolites in CHO cell culture using multivariate analysis methods. Biotechnology Progress, 2008,24(3):675-683.
pmid: 18422365
[12] Woolley J F, Al-Rubeai M. The application of SELDI-TOF mass spectrometry to mammalian cell culture. Biotechnology Advances, 2009,27(2):177-184.
pmid: 19049820
[13] Li F, Zhou J X, Yang X, et al. Current therapeutic antibody production and process optimization. Bioprocessing Journal, 2006,5(4):16-25.
doi: 10.12665/issn.1538-8786
[14] Feeney L, Carvalhal V, Yu X C, et al. Eliminating tyrosine sequence variants in CHO cell lines producing recombinant monoclonal antibodies. Biotechnology and Bioengineering, 2013,110(4):1087-1097.
doi: 10.1002/bit.24759
[15] 庄少颖, 史劲松. 重组抗CD20单克隆抗体细胞培养工艺优化. 名医, 2020,12:349-352.
Zhuang S Y, Shi J S. The optimization of cell culture process for recombinant anti-CD20 monoclonal antibody. Renowned Doctor, 2020,12:349-352.
[1] 周松涛,陈蕴,龚笑海,金坚,李华钟. 利用CRISPR/Cas9技术构建稳定表达人白蛋白基因的中国仓鼠卵巢细胞系 *[J]. 中国生物工程杂志, 2019, 39(4): 52-59.
[2] 张晶晶, 刘克东, 钱凯, 缪亚娜, 蔡燕飞, 李成媛, 陈蕴, 金坚. 稳定表达GLP-1类似物的CHO细胞株的构建及培养工艺研究[J]. 中国生物工程杂志, 2017, 37(5): 52-58.
[3] 李成媛, 张晶晶, 钱凯, 缪亚娜, 蔡燕飞, 杨剑峰, 何杨, 金坚. 人血清白蛋白-干扰素α2b融合蛋白在CHO细胞中的表达[J]. 中国生物工程杂志, 2016, 36(7): 7-14.
[4] 万艳,李丽玲,谢秋玲,郭淑军,秦丽,张勇仓,陈小佳. 在CHO细胞中表达重组sPDGFRα-Fc及其抑制细胞增殖的研究[J]. 中国生物工程杂志, 2009, 29(07): 1-6.
[5] 吴海涛, 胡云龙, 陈松, 刁振宇, 金丽娜, 李洁, 张双全. 重组蛋白在中国仓鼠卵巢细胞中高效表达的影响因素[J]. 中国生物工程杂志, 2004, 24(8): 1-5.
[6] 汪小凤, 郑青. 生物技术药物药代动力学研究的方法学和实验设计[J]. 中国生物工程杂志, 2004, 24(2): 80-83,87.
[7] 申烨华, 耿信笃. CHO细胞表达系统研究新进展[J]. 中国生物工程杂志, 2000, 20(4): 23-25.
[8] 庄蕾, 陈冠军, 高培基. SIS聚合物在生物技术中的应用[J]. 中国生物工程杂志, 1998, 18(6): 58-62.