Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (12): 18-24    DOI: 10.13523/j.cb.2009025
新型冠状病毒检测与治疗     
CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*
王伟东,杜加茹,张运尚,樊剑鸣()
郑州大学公共卫生学院 郑州 450001
The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases
WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming()
School of Public Health, Zhengzhou University,Zhengzhou 450001, China
 全文: PDF(5177 KB)   HTML
摘要:

病毒感染相关疾病严重威胁人类的健康,目前的抗病毒疗法难以治愈慢性病毒性感染引起的一些疾病,如获得性免疫缺陷综合征和乙型肝炎等,因此迫切需要新的治疗方法。可直接靶向遗传物质的基因编辑技术或将成为对抗病毒的有力工具。作为一种可编程的核酸酶介导的新型基因编辑技术,CRISPR/Cas9系统因其具有编辑效率高、操作简单、成本低、适用范围广等优点,而成功应用于多种人类相关疾病的研究中,也为病毒感染相关疾病的研究以及开发新的治疗方法提供了新的技术手段。主要对CRISPR/Cas9系统的作用机制以及在人类常见的病毒感染相关疾病治疗研究中的最新进展进行综述。

关键词: 病毒感染CRISPR/Cas9基因编辑疾病治疗    
Abstract:

Viral infection-related diseases pose a serious threat to human health. Current antiviral therapies cannot cure some diseases caused by chronic viral infections, such as AIDS and hepatitis B. Therefore, new treatment methods are urgently needed. Gene-editing technology that can directly target genetic material may become a powerful tool against viruses. As a new programmable nuclease-mediated gene-editing technology, the CRISPR/Cas9 system has been successfully applied to the research of a variety of human-related diseases due to its high editing efficiency, simple operation, low cost, and wide application range. It also provides new technical means for the research of viral infection-related diseases and the development of new treatment methods. The mechanism of the CRISPR/Cas9 system and the latest advances in the treatment of common human viral infection-related diseases were reviewed in the article.

Key words: Virus infection    CRISPR/Cas9    Gene-editing    Disease treatment
收稿日期: 2020-09-14 出版日期: 2021-01-14
ZTFLH:  Q789  
基金资助: * 国家自然科学基金资助项目(31372453)
通讯作者: 樊剑鸣     E-mail: fan5746067@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王伟东
杜加茹
张运尚
樊剑鸣

引用本文:

王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.

WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases. China Biotechnology, 2020, 40(12): 18-24.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2009025        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I12/18

图1  CRISPR/Cas9系统的结构
图2  CRISPR/Cas9系统的作用机制
[1] Mahfouz M M, Li L, Shamimuzzaman M, et al. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA, 2011,108(6):2623-2628.
pmid: 21262818
[2] Doudna J A, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014,346(6213):1258096.
doi: 10.1126/science.1258096 pmid: 25430774
[3] Jansen R, Embden J D, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002,43(6):1565-1575.
doi: 10.1046/j.1365-2958.2002.02839.x pmid: 11952905
[4] Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 2007,8(1):172.
[5] Horvath P, Romero D A, Coûté-Monvoisin A C, et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. Journal of Bacteriology, 2008,190(4):1401-1412.
doi: 10.1128/JB.01415-07 pmid: 18065539
[6] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821.
pmid: 22745249
[7] Makarova K S, Aravind L, Grishin N V, et al. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Research, 2002,30(2):482-496.
pmid: 11788711
[8] Makarova K S, Haft D H, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol, 2011,9(6):467-477.
pmid: 21552286
[9] Garneau J E, Dupuis M è, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010,468(7320):67-71.
pmid: 21048762
[10] Deltcheva E, Chylinski K, Sharma C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011,471(7340):602-607.
pmid: 21455174
[11] Maartens G, Celum C, Lewin S R. HIV infection: epidemiology, pathogenesis, treatment, and prevention. Lancet, 2014,384(9939):258-271.
doi: 10.1016/S0140-6736(14)60164-1 pmid: 24907868
[12] Ebina H, Misawa N, Kanemura Y, et al. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Scientific Reports, 2013,3(1):7.
[13] Chan D C, Kim P S. HIV entry and its inhibition. Cell, 1998,93(5):681-684.
doi: 10.1016/s0092-8674(00)81430-0 pmid: 9630213
[14] Li C, Guan X M, Du T, et al. Inhibition of HIV-1 infection of primary CD4(+) T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. Journal of General Virology, 2015,96(Pt-8):2381-2393.
[15] Xu L, Yang H, Gao Y, et al. CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Molecular Therapy, 2017,25(8):1782-1789.
doi: 10.1016/j.ymthe.2017.04.027 pmid: 28527722
[16] Xiao Q Q, Chen S L, Wang Q K, et al. CCR5 editing by Staphylococcus aureus Cas9 in human primary CD4(+) T cells and hematopoietic stem/progenitor cells promotes HIV-1 resistance and CD4(+) T cell enrichment in humanized mice. Retrovirology, 2019,16:17.
doi: 10.1186/s12977-019-0479-9 pmid: 31242909
[17] Connor R I, Sheridan K E, Ceradini D, et al. Change in coreceptor use correlates with disease progression in HIV-1: infected individuals. The Journal of experimental medicine, 1997,185(4):621-628.
doi: 10.1084/jem.185.4.621 pmid: 9034141
[18] Wang Q K, Chen S L, Xiao Q Q, et al. Genome modification of CXCR4 by Staphylococcus aureus Cas9 renders cells resistance to HIV-1 infection. Retrovirology, 2017,14(1):12.
doi: 10.1186/s12977-017-0338-5 pmid: 28193275
[19] Hou P P, Chen S L, Wang S L, et al. Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Scientific Reports, 2015,5(1):12.
[20] Liu Z P, Chen S L, Jin X, et al. Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4(+) T cells from HIV-1 infection. Cell and Bioscience, 2017,7(1):15.
doi: 10.1186/s13578-017-0142-x
[21] Trepo C, Chan H L Y, Lok A. Hepatitis B virus infection. Lancet, 2014,384(9959):2053-2063.
doi: 10.1016/S0140-6736(14)60220-8 pmid: 24954675
[22] Maepa M B, Jacobs R, Van Den Berg F, et al. Recent developments with advancing gene therapy to treat chronic infection with hepatitis B virus. Current Opinion in Hiv and Aids, 2020,15(3):200-207.
doi: 10.1097/COH.0000000000000623 pmid: 32141890
[23] Ramanan V, Shlomai A, Cox D B T, et al. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Scientific Reports, 2015,5(1):10833.
[24] Wang J, Xu Z W, Liu S, et al. Dual gRNAs guided CRISPR/Cas9 system inhibits hepatitis B virus replication. World Journal of Gastroenterology, 2015,21(32):9554-9565.
doi: 10.3748/wjg.v21.i32.9554 pmid: 26327763
[25] Li H, Sheng C Y, Wang S, et al. Removal of integrated hepatitis B virus DNA using CRISPR-Cas9. Frontiers in Cellular and Infection Microbiology, 2017,7:91.
doi: 10.3389/fcimb.2017.00091 pmid: 28382278
[26] Liu Y, Zhao M X, Gong M X, et al. Inhibition of hepatitis B virus replication via HBV DNA cleavage by Cas9 from Staphylococcus aureus. Antiviral Research, 2018,152:58-67.
doi: 10.1016/j.antiviral.2018.02.011 pmid: 29458131
[27] Song J, Zhang X C, Ge Q Y, et al. CRISPR/Cas9-mediated knockout of HBsAg inhibits proliferation and tumorigenicity of HBV-positive hepatocellular carcinoma cells. Journal of Cellular Biochemistry, 2018,119(10):8419-8431.
pmid: 29904948
[28] Zhou S J, Deng Y L, Liang H F, et al. Hepatitis B virus X protein promotes CREB-mediated activation of miR-3188 and Notch signaling in hepatocellular carcinoma. Cell Death and Differentiation, 2017,24(9):1577-1587.
doi: 10.1038/cdd.2017.87 pmid: 28574502
[29] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018,68(6):394-424.
doi: 10.3322/caac.21492 pmid: 30207593
[30] Yeo-Teh N S L, Ito Y, Jha S. High-risk human papillomaviral oncogenes E6 and E7 target key cellular pathways to achieve oncogenesis. Int J Mol Sci, 2018,19(6):1706.
doi: 10.3390/ijms19061706
[31] Zhen S, Hua L, Takahashi Y, et al. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochemical and Biophysical Research Communications, 2014,450(4):1422-1426.
doi: 10.1016/j.bbrc.2014.07.014
[32] Zhen S, Lu J J, Wang L J, et al. In vitro and in vivo synergistic therapeutic effect of cisplatin with human papillomavirus16 E6/E7 CRISPR/Cas9 on cervical cancer cell line. Translational Oncology, 2016,9(6):498-504.
doi: 10.1016/j.tranon.2016.10.002 pmid: 27816686
[33] Pirouzfar M, Amiri F, Dianatpour M, et al. CRISPR/Cas9-mediated knockout of MLL5 enhances apoptotic effect of cisplatin in HeLa cells in vitro. Excli Journal, 2020,19:170-182.
doi: 10.17179/excli2019-1957 pmid: 32194363
[34] Zhong S, Zhang Y, Yin X, et al. CDK7 inhibitor suppresses tumor progression through blocking the cell cycle at the G2/M phase and inhibiting transcriptional activity in cervical cancer. Oncotargets and Therapy, 2019,12:2137-2147.
doi: 10.2147/OTT
[35] Ling K, Yang L, Yang N, et al. Gene targeting of HPV18 E6 and E7 synchronously by nonviral transfection of CRISPR/Cas9 system in cervical cancer. Human Gene Therapy, 2020,31(5-6):297-308.
doi: 10.1089/hum.2019.246 pmid: 31989837
[36] Van Diemen F R, Kruse E M, Hooykaas M J G, et al. CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections. Plos Pathogens, 2016,12(6):29.
[37] Turner E M, Brown R S H, Laudermilch E, et al. The Torsin activator LULL1 is required for efficient growth of herpes simplex virus 1. Journal of Virology, 2015,89(16):8444-8452.
doi: 10.1128/JVI.01143-15 pmid: 26041288
[38] Roehm P C, Shekarabi M, Wollebo H S, et al. Inhibition of HSV-1 replication by gene editing strategy. Scientific Reports, 2016,6(5457):23146.
[39] Latif M B, Raja R, Kessler P M, et al. Relative contributions of the cGAS-STING and TLR3 signaling pathways to attenuation of herpes simplex virus 1 replication. Journal of Virology, 2020,94(6):e01717-19.
doi: 10.1128/JVI.01717-19 pmid: 31896590
[40] Young L S, Rickinson A B. Epstein-Barr virus: 40 years on. Nat Rev Cancer, 2004,4(10):757-768.
doi: 10.1038/nrc1452 pmid: 15510157
[41] Su S, Zou Z, Chen F, et al. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology, 2017,6(1):e1249558.
doi: 10.1080/2162402X.2016.1249558 pmid: 28197365
[42] Yuen K S, Wang Z M, Wong N H M, et al. Suppression of Epstein-Barr virus DNA load in latently infected nasopharyngeal carcinoma cells by CRISPR/Cas9. Virus Research, 2018,244:296-303.
doi: 10.1016/j.virusres.2017.04.019 pmid: 28456574
[43] Huo H, Hu G. CRISPR/Cas9-mediated LMP1 knockout inhibits Epstein-Barr virus infection and nasopharyngeal carcinoma cell growth. Infectious Agents and Cancer, 2019,14(4):30.
doi: 10.1186/s13027-019-0246-5
[44] Janoly-Dumenil A, Rouvet I, Bleyzac N, et al. A pharmacodynamic model of ganciclovir antiviral effect and toxicity for lymphoblastoid cells suggests a new dosing regimen to treat cytomegalovirus infection. Antimicrobial Agents and Chemotherapy, 2012,56(7):3732-3738.
doi: 10.1128/AAC.06423-11 pmid: 22526305
[45] King M W, Munger J. Editing the human cytomegalovirus genome with the CRISPR/Cas9 system. Virology, 2019,529:186-194.
doi: 10.1016/j.virol.2019.01.021 pmid: 30716580
[46] Gergen J, Coulon F, Creneguy A, et al. Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene. PLoS One, 2018,13(2):e0192602.
doi: 10.1371/journal.pone.0192602 pmid: 29447206
[47] Tai-Schmiedel J, Karniely S, Lau B, et al. Human cytomegalovirus long noncoding RNA4.9 regulates viral DNA replication. PLoS Pathogens, 2020,16(4):e1008390.
doi: 10.1371/journal.ppat.1008390 pmid: 32294138
[48] He M, Yuan H, Tan B, et al. SIRT1-mediated downregulation of p27(Kip1) is essential for overcoming contact inhibition of Kaposi’s sarcoma-associated herpesvirus transformed cells. Oncotarget, 2016,7(46):75698-75711.
doi: 10.18632/oncotarget.12359 pmid: 27708228
[49] Tso F Y, West J T, Wood C. Reduction of kaposi’s sarcoma-associated herpesvirus latency using CRISPR-Cas9 to edit the latency-associated nuclear antigen gene. Journal of Virology, 2019,93(7):e02183-18.
doi: 10.1128/JVI.02183-18 pmid: 30651362
[1] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[2] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[3] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[4] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[5] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[6] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[7] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[8] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[9] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[10] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[11] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[12] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[13] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[14] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.
[15] 周松涛,陈蕴,龚笑海,金坚,李华钟. 利用CRISPR/Cas9技术构建稳定表达人白蛋白基因的中国仓鼠卵巢细胞系 *[J]. 中国生物工程杂志, 2019, 39(4): 52-59.