Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (3): 111-116    DOI: 10.13523/j.cb.1908020
综述     
脂肪组织外泌体与机体其他组织互作研究进展 *
吴佳韩1,江霖1,陈婷1,孙加节2,张永亮2,习欠云3,**()
1 广东省动物营养调控重点实验室 广州 510642
2 国家生猪种业工程技术中心 广州 510642
3 华南农业大学动物科学学院 广州 510642
Research on the Interaction between Adipose Tissue Exosomes and Other Tissues
WU Jia-han1,JIANG Lin1,CHEN Ting1,SUN Jia-jie2,ZHANG Yong-liang2,XI Qian-yun3,**()
1 Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642,China
2 National Engineering Research Center For Breeding Swine Industry, Guangzhou 510642,China
3 College of Animal Science, South China Agricultural University, Guangzhou 510642, China
 全文: PDF(540 KB)   HTML
摘要:

脂肪作为机体内最大的分泌器官,可以通过释放激素,细胞因子等调节其他的组织器官.近年来研究发现,脂肪组织可以释放外泌体并通过体液循环传递信号至其他组织器官,调节其靶器官的生理功能,且针对不同的靶器官,外泌体会产生不同的作用效果.机体的稳态是各组织间相互作用的结果,外泌体的发现,为脂肪组织与其他组织互作提供了稳定的物质基础,但是,脂肪外泌体的作用依旧存在着许多未知效果.从脂肪组织外泌体的发现,鉴定,以及脂肪外泌体与肝脏,肌肉和其他组织器官的相互作用等方面进行综述,为脂肪外泌体的研究提供理论依据,以便更好地探索生命的奥秘.

关键词: 脂肪组织外泌体信号传递    
Abstract:

Fat, as the largest secretory organ in the body, can regulate other tissues and organs by releasing hormones and cytokines. In recent years, studies have found that adipose tissue can release the form of exosomes, transmit signals to other tissues and organs through the circulation of body fluids, and regulate the physiological functions of its target organs, such as regulating liver fat deposition, muscle glycogen synthesis, angiogenesis, and damage repair. Such functions, for different target organs, exosomes will have different effects. The homeostasis of the body is the result of interactions between tissues, and the discovery of exosomes provides a stable material basis for the interaction of adipose tissue with other tissues, and the role of fat exosomes still has many unknown effects. The identification of adipose tissue exosomes and the interaction of adipose exosomes on the liver, muscle, and other tissues and organs from recent experimental reports were reviewed, provide a theoretical basis for the study of fat exosomes, and better explore the mysteries of life.

Key words: Adipose tissue    Exosomes    Signal transmission
收稿日期: 2019-08-10 出版日期: 2020-04-18
ZTFLH:  Q493.5  
基金资助: * 国家自然科学基金(31872435);广东省自然科学基金重点项目(2018B030311015)
通讯作者: 习欠云     E-mail: xqy0228@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴佳韩
江霖
陈婷
孙加节
张永亮
习欠云

引用本文:

吴佳韩,江霖,陈婷,孙加节,张永亮,习欠云. 脂肪组织外泌体与机体其他组织互作研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 111-116.

WU Jia-han,JIANG Lin,CHEN Ting,SUN Jia-jie,ZHANG Yong-liang,XI Qian-yun. Research on the Interaction between Adipose Tissue Exosomes and Other Tissues. China Biotechnology, 2020, 40(3): 111-116.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1908020        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I3/111

图1  脂肪外泌体与肝脏,肌肉的作用关系[22]
[1] Zorc M, Pleskovic R Z, Pleskovic A , et al. CRT-100.81 inflammation in endocrine perivascular fat tissue and state of tunica media in atherosclerotic coronary arteries. Jacc Cardiovascular Interventions, 2018,11(4):S23.
[2] Nagy E, Jermendy A L, Merkely B , et al. Clinical importance of epicardial adipose tissue. Archives of Medical Science Ams, 2017,13(4):864-874.
[3] Iacobellis G . Epicardial adipose tissue in endocrine and metabolic diseases. Endocrine, 2014,46(1):8-15.
[4] Bouchi R, Takeuchi T, Akihisa M , et al. High visceral fat with low subcutaneous fat accumulation as a determinant of atherosclerosis in patients with type 2 diabetes. Cardiovascular Diabetology, 2015,14(1):136.
[5] Musselman L P , Khnlein R P. Drosophila as a model to study obesity and metabolic disease. Journal of Experimental Biology, 2018, 221(Suppl 1): jeb163881.
[6] Deng Z B . Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes, 2009,58(11):2498.
[7] Li Z, Wang Y J, Xiao K , et al. Emerging role of exosomes in the joint diseases. Cellular Physiology & Biochemistry, 2018,47(5):2008-2017.
[8] Verweij F J ,Eijndhoven M A J V, Middeldorp J , et al.Analysis of viral microRNA exchange via exosomes in vitro and in vivo. Methods in Molecular Biology, 2013,1024(5):53-68.
[9] Eldh M, Bagge R O, Lsser C , et al. MicroRNA in exosomes isolated directly from the liver circulation in patients with metastatic uveal melanoma. BMC Cancer, 2014,14(1):962.
[10] Peng P, Yan Y, Keng S . Exosomes in the ascites of ovarian cancer patients: origin and effects on anti-tumor immunity. Oncology Reports, 2011,25(3):749-762.
[11] Li X, Wang Y, Wang Q , et al. Exosomes in cancer: Small transporters with big functions. Cancer Letters, 2018,435(18):55-65.
[12] Johnstone R M, Adam M, Hammond J R , et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). Journal of Biological Chemistry, 1987,262(19):9412-9420.
[13] Pan B T, Johnstone R M . Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell, 1983,33(3):967-978.
[14] Valadi H, Ekstr M K, Bossios A , et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 2007,9(6):654.
[15] Ogawa R, Tanaka C, Sato M , et al. Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation. Biochemical & Biophysical Research Communications, 2010,398(4):723-729.
[16] Lin R, Wang S, Zhao R C . Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Molecular & Cellular Biochemistry, 2013,383(1-2):13-20.
[17] Katsuda T, Tsuchiya R, Kosaka N , et al. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Scientific Reports, 2013,3(11):11-27.
[18] Momenheravi F, Bala S, Kodys K , et al. Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS. Sci Rep, 2015,5(2):91-99.
[19] Thomou T, Mori M A, Dreyfuss J M , et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature, 2017,542(7642):450-455.
[20] Phoonsawat W, Aoki-Yoshida A, Tsuruta T , et al. Adiponectin is partially associated with exosomes in mouse serum. Biochemical & Biophysical Research Communications, 2014,448(3):261-266.
[21] Gaudet A D , Fonken l K, Gushchina L V,et al. miR-155 deletion in female mice prevents diet-induced obesity. Scientific Reports, 2016,6(22):862-876.
[22] Ying W, Riopel M, Bandyopadhyay G , et al. Adipose tissue macrophage-derived exosomal mirnas can modulate in vivo and in vitro insulin sensitivity. Cell, 2017,171(2):372.
[23] Qu Y, Zhang Q, Cai X , et al. Exosomes derived from miR‐181‐5p‐modified adipose‐derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. Journal of Cellular & Molecular Medicine, 2017,21(10):2491.
[24] Jin Y P, Wang J Y, Li H C , et al. Extracellular vesicles secreted by human adipose-derived stem cells (hASCs) Improve survival rate of rats with acute liver failure by releasing lncRNA H19. EBioMedicine, 2018,34:231-242.
[25] Jing P, Zhao N, Ye M , et al. Protein arginine methyltransferase 5 promotes lung cancer metastasis via the epigenetic regulation of miR-99 family/FGFR3 signaling. Cancer Letters, 2018,427(2018):38-48.
[26] Al-Aqil F A, Monte M J, Peleteiro-Vigil A , et al. Interaction of glucocorticoids with FXR/FGF19/FGF21-mediated ileum-liver crosstalk. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2018. 1864(9):2927-2937.
[27] Hevener A L, He W, Barak Y , et al. Muscle-specific Pparg deletion causes insulin resistance. Nature Medicine, 2003,9(12):1491-1497.
[28] Ali A T, Hochfeld W E, Myburgh R , et al. Adipocyte and adipogenesis. European Journal of Cell Biology, 2013,92(6-7):229.
[29] Bleau C, Karelis A D , St‐Pierre D H, et al.Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low‐grade inflammation and the development of obesity and diabetes. Diabetes/metabolism Research & Reviews, 2015,31(6):545-561.
[30] Pierce J R, Maples J M, Hickner R C . IL-15 concentrations in skeletal muscle and subcutaneous adipose tissue in lean and obese humans: local effects of IL-15 on adipose tissue lipolysis. Am J Physiol Endocrinol Metab, 2015,308(12):1131-1139.
[31] Yu Y, Du H, Wei S , et al. Adipocyte-derived exosomal miR-27a induces insulin resistance in skeletal muscle through repression of PPARγ. Theranostics, 2018,8(8):2171-2188.
[32] Ferrante S C, Nadler E P, Pillai D K , et al. Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease. Pediatric Research, 2015,77(3):447-454.
[33] Kranendonk M E ,Visseren F L, van Herwaarden J A, et al.Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells. Obesity, 2014,22(10):2216-2223.
[34] Shirvani H, Arabzadeh E . Metabolic cross-talk between skeletal muscle and adipose tissue in high-intensity interval training vs. moderate-intensity continuous training by regulation of PGC-1α. Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity, 2018,25(1):17-24.
[35] Indrakusuma I, Sell H, Eckel J . Novel Mediators of Adipose Tissue and Muscle Crosstalk. Current Obesity Reports, 2015,4(4):411-417.
[36] Tkaddour A, Thomas A, Mardon J , et al. Potential of fluorescence spectroscopy to predict fatty acid composition of beef. Meat Science, 2016,113(2016):124-131.
[37] Meijer R I, Bakker W ,Alta C L A F, et al. Perivascular adipose tissue control of insulin-induced vasoreactivity in muscle is impaired in db/db mice. Diabetes, 2013,62(2):590-598.
[38] Poletto A C, Furuya D T, David-Silva A , et al. Oleic and linoleic fatty acids downregulate Slc2a4 /GLUT4 expression via NFKB and SREBP1 in skeletal muscle cells. Molecular & Cellular Endocrinology, 2015,401(C):65-72.
[39] Porstmann T, Griffiths B, Chung Y L , et al. PKB|[sol]|Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene, 2005,24(43):6465-6481.
[40] Obata Y, Kita S, Koyama Y , et al. Adiponectin/T-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release. Jci Insight, 2018,3(8):67-83.
[41] Li W, Liu Y, Zhang P , et al. Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration. Acs Applied Materials & Interfaces, 2018,10(6):5240-5254.
[42] Lu Z F, Chen Y J ,Dunstan, et al. Priming adipose stem cells with tumor necrosis factor-alpha preconditioning potentiates their exosome efficacy for bone regeneration. Tissue Eng Part A, 2017,23(21):1212-1220.
[43] Choi E W, Seo M K, Woo E Y , et al. Exosomes from human adipose derived stem cells promote proliferation and migration of skin fibroblasts. Experimental Dermatology, 2017,27(10):1170-1172.
[44] Ren S, Chen J, Duscher D , et al. Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways. Stem Cell Res Ther, 2019,10(47):64-82.
[45] Wang F, Chen F F, Shang Y Y , et al. Insulin resistance adipocyte-derived exosomes aggravate atherosclerosis by increasing vasa vasorum angiogenesis in diabetic ApoE-/- mice. International Journal of Cardiology, 2018,265(28):181-187.
[46] Bai Y, Han Y D, Yan X L , et al. Adipose mesenchymal stem cell-derived exosomes stimulated by hydrogen peroxide enhanced skin flap recovery in ischemia-reperfusion injury. Biochemical & Biophysical Research Communications, 2018,500(2):310-317.
[47] Cui X, He Z, Liang Z , et al. Exosomes from adipose-derived mesenchymal stem cells protect ischemic myocardium from ischemia/reperfusion injury via Wnt/β-catenin signaling pathway. J Cardiovasc Pharmacol, 2017,70(4):225.
[48] Luo Q, Guo D, Liu G , et al. Exosomes from MiR-126-overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury. Cellular Physiology & Biochemistry, 2017,44(6):2105-2116.
[49] Zhu F ,Shin O L S C L, Pei G, et al. Adipose-derived mesenchymal stem cells employed exosomes to attenuate AKI-CKD transition through tubular epithelial cell dependent Sox9 activation. Oncotarget, 2017,8(41):70707-70726.
[50] Yuki S, Aki T, Haruhiko A , et al. Scx+/Sox9 progenitors contribute to the establishment of the junction between cartilage and tendon/ligament . Development, 2013,140(11):2280-2288.
[51] Patel N A, Moss L D, Lee J Y , et al. Long noncoding RNA MALAT1 in exosomes drives regenerative function and modulates inflammation-linked networks following traumatic brain injury. Journal of Neuroinflammation, 2018,15(1):204.
[52] Kim S H, Bianco N R, Shufesky W J , et al. Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. Journal of Immunology, 2007,179(4):2242-2249.
[53] Mori M A, Thomou T, Boucher J , et al. Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy. Journal of Clinical Investigation, 2014,124(8):3339.
[1] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[2] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[3] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[4] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[5] 邱金戈,刘德武,孙宝丽,李耀坤,郭勇庆,邓铭,柳广斌. 动物外泌体分离方法的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 36-42.
[6] 毛慧,吕玉华,朱丽慧,林月霞,廖荣荣. 外泌体在病毒感染诊断和治疗中的作用研究 *[J]. 中国生物工程杂志, 2020, 40(3): 104-110.
[7] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[8] 刘艳,戴鹏,朱运峰. 外泌体作为肿瘤标志物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(8): 74-79.
[9] 刘艳,戴鹏,朱运峰. 外泌体与自噬体相互关系研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 78-83.
[10] 元小宁, 朱运峰. 外泌体(Exosome)及其在肿瘤调控中的作用[J]. 中国生物工程杂志, 2013, 33(8): 111-117.
[11] 苗向阳 冯浩咏. 北京油鸡与AA肉鸡脂肪组织差异表达基因的研究[J]. 中国生物工程杂志, 2010, 30(03): 40-45.
[12] 马勇江,李玉谷,窦忠英. 脂肪间质干细胞研究进展[J]. 中国生物工程杂志, 2006, 26(05): 89-92.
[13] 柴建华, 林云富. 高等植物发育过程中基因表达的调控[J]. 中国生物工程杂志, 1993, 13(3): 14-24.