Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (1-2): 140-145    DOI: 10.13523/j.cb.1905022
综述     
细菌-噬菌体对抗性共进化研究进展 *
崔自红,季秀玲()
昆明理工大学生命科学与技术学院 昆明 650500
Advances in Bacteria-Phage Antagonistic Coevolution
CUI Zi-hong,JI Xiu-ling()
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
 全文: PDF(385 KB)   HTML
摘要:

共进化现象在自然界中普遍存在。细菌和细菌的天敌噬菌体之间的对抗是一场持久战,细菌-噬菌体系统是研究共进化的模式材料。目前关于细菌-噬菌体对抗性共进化的机制有两种公认的模型,即GFG模型和MA模型,对应于两种模式,即ARD模式和FSD模式;主要采用Time-Shift Assays方法测定细菌-噬菌体的对抗性共进化动力学模式。长尾噬菌体是有尾噬菌体中最大的家族。目前关于细菌-噬菌体系统共进化的研究主要集中在短尾和肌尾噬菌体与其宿主之间,而细菌-长尾噬菌体共进化的研究报道较少。

关键词: 对抗性共进化攻防机制共进化动力学    
Abstract:

Coevolution is ubiquitous in nature. The natural enemies of bacteria and bacteria are a constant battle.Bacteria-phage system is a model material for studying coevolution. Bacteriophages, currently, there are two recognized models for the mechanism of bacteria-phage antagonistic coevolution: GFG model and MA model;corresponding to two models: ARD model and FSD model.The antagonistic coevolutionary kinetic model of bacteriophage was determined by time-shift assays. Long-tailed phages are the largest family of tailed phages. At present, the studies on bacteria-phage system coevolution mainly focus on the short tail and myotail phage and their hosts, while the bacteria-long tail phage coevolution has not been reported.

Key words: Antagonistic coevolution    Defense mechanism    Coevolutionary dynamics
收稿日期: 2019-05-15 出版日期: 2020-03-27
ZTFLH:  Q815  
基金资助: * 国家自然科学基金(31860147)
通讯作者: 季秀玲     E-mail: jixiuling1023@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
崔自红
季秀玲

引用本文:

崔自红,季秀玲. 细菌-噬菌体对抗性共进化研究进展 *[J]. 中国生物工程杂志, 2020, 40(1-2): 140-145.

CUI Zi-hong,JI Xiu-ling. Advances in Bacteria-Phage Antagonistic Coevolution. China Biotechnology, 2020, 40(1-2): 140-145.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1905022        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I1-2/140

[1] Dennehy J J . What can phages tell us about host-pathogen coevolution. International Journal of Evolutionary Biology, 2012,2012(3):1-12.
[2] Dong C, Hao G F, Hua H L , et al. Anti-CRISPRdb: a comprehensive online resource for anti-CRISPR proteins. Nucleic Acids Res, 2018,46(D1):D393-D398.
[3] Gómez P, Buckling A . Bacteria-phage antagonistic coevolution in soil. Science, 2011,332(6025):106-109.
[4] Zhang Q G, Buckling A . Antagonistic coevolution limits population persistence of a virus in a thermally deteriorating environment. Ecol Lett, 2011,14(3):282-288.
[5] Thompson J N . The role of coevolution. Science, 2012,335(6067):410-411
[6] Woolhouse M, Webster J, Domingo E , et al. Biological and biomedical implications of the coevolution of pathogens and their hosts. Nat Genet, 2002,32(4):569-577.
[7] Scanlan P D . Bacteria-bacteriophage coevolution in the human gut: implications for microbial diversity and functionality. Trends in Microbiology, 2017,25(8):614-623.
[8] Koskella1 B, Brockhurst M . Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev, 2014,38(5):916-931.
[9] Gomez P, Ashby B, Buckling A . Population mixing promotes arm race host-parasite coevolution. Pro R Soc B, 2014,282(1798):20142297.
[10] Gómez P, Paterson S, Meester L D , et al. Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nature Communications, 2016,7:12453.
[11] 李铁民, 杜波 . CRISPR-Cas系统与细菌和噬菌体的共进化. 遗传, 2011,33(3):213-218.
Li T M, Du P . CRISPR-Cas system and coevolution of bacteria and phages. Hereditas, 2011,33(3):213-218.
[12] Shabbir M A, Hao H, Shabbir M Z , et al. Bacteria vs. bacteriophages: parallel evolution of immune arsenals. Front Microbiol, 2016,7:1292.
[13] Makarova K S, Wolf Y I, Alkhnbashi O S , et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol, 2015,13(11):722-736.
[14] Koonin E V, Makarova K S, Zhang F . Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol, 2017,37:67-78.
[15] Common J, Morley D, Westra E R , et al. CRISPR-Cas immunity leads to a coevolutionary arms race between Streptococcus thermophilus and lytic phage374. Biological Sciences, 2019,74(1772):20180098.
[16] Chopin M C, Chopin A, Bidnenko E . Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol, 2005,8(4):473-479.
[17] Ofir G, Melamed S, Sberro H , et al. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nature Microbiology, 2017,3(1):90-98.
[18] 张庆, 商延, 朱见深 . 噬菌体与宿主细菌的攻防机制. 山东农业科学, 2018,50(7):48-54.
Zhang Q, Shang Y, Zhu J S . Defense and anti-defense mechanisms of bacteriophages and host bacteria. Shandong Agricultural Sciences, 2018,50(7):48-54.
[19] Sun X, Gohler A, Heller K , et al. The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis. Virology, 2006,350(1):146-157.
[20] Doermann A H . Lysis inhibition with Escherichia coli bacteriophages. J Bacteriol, 1948,55(2):57-75.
[21] Bondy-Denomy J, Pawluk A, Maxwell K L , et al. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature, 2012,493(7432):429-432.
[22] Smargon A A, Cox D B T, Pyzocha N K , et al. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol Cell, 2017,65(4):618-630.
[23] Pawluk A, Bondy-Denomy J, Cheung V H , et al. A new group of phage anti[1]-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. MBio, 2014,5(2): e00896.
[24] Rauch B J, Silvis M R, Hultquist J F , et al. Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell, 2016,168(1-2):150-158.
[25] Fineran P C, Blower T R, Foulds I J , et al. The phage abortive infection system ToxIN,functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci USA, 2009,106(3):894-899.
[26] Molineux I J . Host-parasite interactions: recent developments in the genetics of abortive phage infections. New Biol, 1991,3(3):230-236.
[27] Snyder L . Phage‐exclusion enzymes: a bonanza of biochemical and cell biology reagents. Molecular Microbiology, 1995,15(3):415-420.
[28] Slavcev R A, Hayes S . Stationary phase-like properties of the bacteriophage lambda Rex exclusion phenotype. Molecular Genetics & Genomics, 2003,269(1):40-48.
[29] Snyder L . Phage-exclusion enzymes: a bonanza of biochemical and cell biology reagents. Molecular Microbiology, 2010,15(3):415-420.
[30] Bergsland K J, Kao C, Yu Y T , et al. A site in the T4 bacteriophage major head protein gene that can promote the inhibition of all translation in Escherichia coli. Journal of Molecular Biology, 1990,213(3):477-494.
[31] Yu Y T, Snyder L . Translation elongation factor Tu cleaved by a phage-exclusion system. Proceedings of the National Academy of Sciences of the United States of America, 1994,91(2):802-806.
[32] Lacks S A, Greenberg B . A deoxyribonuclease of Diplococcus pneumoniae specific for methylated DNA. Journal of Biological Chemistry, 1975,250(11):4060-4066.
[33] Zabeau M, Friedman S, Montagu M V , et al. The ral gene of phage lambda. I. Identification of a non-essential gene that modulates restriction and modification in E. coli. Mol Gen Genet, 1980,179(1):63-73.
[34] King G, Murray N E . Restriction alleviation and modification enhancement by the Rac prophage of Escherichia coli K-12. Molecular Microbiology, 1995,16(4):769-777.
[35] Moldovan R, Chapman-Mcquiston E, Wu X L . On kinetics of phage adsorption. Biophysical Journal, 2007,93(1):303-315.
[36] Bertin A, De F M, Letellier L . Bacteriophage-host interactions leading to genome internalization. Current Opinion in Microbiology, 2011,14(4):492-496.
[37] Chatterjee S, Rothenberg E . Interaction of bacteriophage l with its E. coli receptor, LamB. Viruses, 2012,4(11):3162-3178.
[38] Meyer J R, Dobias D T, Weitz J S , et al. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science, 2012,335(6067):428-432.
[39] František Golais, Jaroslav Hollý, Jana Vítkovská . Coevolution of bacteria and their viruses. Folia Microbiol. 2013,58(3):177-186.
[40] Thrall P H, Barrett L G, Dodds P N , et al. Epidemiological and evolutionary outcomes in gene-for-gene and matching allele models. Frontiers in Plant Science, 2016,6(761):1084.
[41] Frickel J, Sieber M, Becks L . Eco-evolutionary dynamics in a coevolving host-virus system. Ecology Letters, 2016,19(4):450.
[42] Vorburger C, Perlman S J . The role of defensive symbionts in host-parasite coevolution. Biol Rev, 2018,93(4):1747-1764.
[43] Paterson S, Vogwill T, Buckling A , et al. Antagonistic coevolution accelerates molecular evolution. Nature. 2010,464(7286):275-278.
[44] Murphy J, Bottacini F, Mahony J , et al. Comparative genomics and functional analysis of the 936 group of lactococcal Siphoviridae phages. Sci Rep, 2016,6:21345.
[45] Hall A R, Scanlan P D, Morgan A D , et al. Host-parasite coevolutionary arms races give way to fluctuating selection. Ecology Letters, 2011,14(7):635-642.
[46] Vos M, Birkett P J, Birch E , et al. Local adaptation of bacteriophages to their bacterial hosts in soil. Science. 2009,325(5942):833.
[47] Tadmor A D, Ottesen E A, Leadbetter J R , et al. Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science, 2011,333(6038):58-62.
[48] Kimura S, Sakoa Y, Yoshida T . Rapid microcystis cyanophage gene diversification revealed by longand short-term genetic analyses of the tail sheath gene in a natural pond. Appl Environ Micro, 2013,79(8):2789-2795.
[49] Koskella B, Parr N . The evolution of bacterial resistance against bacteriophages in the horse chestnut phyllosphere is general across both space and time. Philos Trans R Soc Lond B Biol Sci, 2015,370(1675):20140297.
[50] Retel C, Märkle H, Becks L , et al. Ecological and evolutionary processes shaping viral genetic diversity. Viruses, 2019; 11(3):220.
[1] 翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.
[2] 王优蓓,郭思妤,常碧博,叶蕊芳,花强. 螺旋链霉菌遗传操作系统-接合转移体系的建立[J]. 中国生物工程杂志, 2021, 41(2/3): 45-52.
[3] 周惠颖,周翠霞,张婷,王雪雨,张会图,冀颐之,路福平. 强化底物利用酶系表达,提升地衣芽孢杆菌生产碱性蛋白酶性能[J]. 中国生物工程杂志, 2021, 41(2/3): 53-62.
[4] 栗波,王泽建,梁剑光,刘爱军,李海东. 等离子体作用结合氧限制模型选育利福霉素SV高产菌株 *[J]. 中国生物工程杂志, 2021, 41(2/3): 38-44.
[5] 朱亚鑫, 段艳婷, 高宇豪, 王籍阅, 张晓梅, 张晓娟, 徐国强, 史劲松, 许正宏. 不同D/L单体比γ-聚谷氨酸的合成与调控[J]. 中国生物工程杂志, 2021, 41(1): 1-11.
[6] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.
[7] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[8] 梅雨薇,杨子云,于樊,龙旭伟. 生物表面活性剂脂肽的发酵生产及抑菌应用研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 105-116.
[9] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[10] 秦旭颖,杨洪江. 噬菌体分离纯化技术研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 78-83.
[11] 王泽建,栗波,王萍,张琴,杭海峰,梁剑光,庄英萍. 葡萄糖和麦芽糖碳源底物对粪产碱杆菌合成凝胶多糖的胞内代谢流影响*[J]. 中国生物工程杂志, 2020, 40(5): 30-39.
[12] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[13] 王蒙,张全,高慧鹏,关浩,曹长海. 生物发酵法制备木糖醇的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 144-153.
[14] 陈子晗,周海胜,尹新坚,吴坚平,杨立荣. Amphibacillus xylanus谷氨酸脱氢酶基因工程菌培养条件优化 *[J]. 中国生物工程杂志, 2019, 39(10): 58-66.
[15] 安明晖,田文,韩晓旭,尚红. 表达HIV单链抗体的重组乳酸杆菌的构建及表型分析 *[J]. 中国生物工程杂志, 2019, 39(10): 1-8.