Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (9): 103-107    DOI: 10.13523/j.cb.20190914
综述     
CAR细胞疗法在T细胞-急性淋巴细胞白血病应用的新进展
陈曼,王爱先,傅旻婧,吴雪英,甄军毅,宫美维,郭亚,王卉()
北京陆道培医院 北京 100176
New Advances in the Application of CAR Cell Therapy in T Cell - acute Lymphoblastic Leukemia
CHEN Man,WANG Ai-xian,WU Xue-ying,ZHEN Jun-yi,GONG Mei-wei,GUO Ya,WANG Hui
Beijing Lu Dao-pei Hospital,Beijing 100176, China
 全文: PDF(365 KB)   HTML
摘要:

嵌合抗原受体(chimeric antigen receptors,CAR)细胞疗法已广泛用于白血病、淋巴瘤的治疗, CD19和CD22靶向CAR-T已在复发、难治性急性B淋巴细胞白血病(RR-B-ALL)等血液系统疾病的治疗上取得了显著疗效,而在T细胞肿瘤治疗上进展缓慢。介绍了目前国内外利用CAR细胞技术与CRISPR / Cas9基因编码技术,设计了T-ALL相关的CAR细胞免疫疗法并进行了CAR细胞免疫疗法在T-ALL治疗上的初步探索。

关键词: 嵌合抗原受体(CAR)细胞免疫疗法T细胞-急性淋巴细胞白血病(T-ALL)外周成人T细胞淋巴瘤(PTCL)    
Abstract:

Currently, cell therapy of Chimeric antigen receptors (CAR) has been widely used in the treatment of leukemia and lymphoma.CD19 and CD22 targeting CAR-T have shown significant efficacy in the treatment of recurrent and refractory acute B-lymphoblastic leukemia (RR-B-ALL) and other hematologic diseases. However, the progress is slow in the treatment of T-lineage tumors. This review introduces the current domestic and international use of CAR cell technology and CRISPR/Cas9 gene coding technology to design T-ALL CAR cell and the preliminary exploration of CAR cell immunotherapy in the treatment of T-lineage acute lymphoblastic leukaemia.

Key words: CAR    Cellular immunotherapy    T-ALL    PTCL
收稿日期: 2019-08-06 出版日期: 2019-09-20
ZTFLH:  Q819  
通讯作者: 王卉     E-mail: wh9784@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈曼
王爱先
傅旻婧
吴雪英
甄军毅
宫美维
郭亚
王卉

引用本文:

陈曼,王爱先,傅旻婧,吴雪英,甄军毅,宫美维,郭亚,王卉. CAR细胞疗法在T细胞-急性淋巴细胞白血病应用的新进展[J]. 中国生物工程杂志, 2019, 39(9): 103-107.

CHEN Man,WANG Ai-xian,WU Xue-ying,ZHEN Jun-yi,GONG Mei-wei,GUO Ya,WANG Hui. New Advances in the Application of CAR Cell Therapy in T Cell - acute Lymphoblastic Leukemia. China Biotechnology, 2019, 39(9): 103-107.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190914        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I9/103

[1] Iacobucci I, Mullighan C G . Genetic basis of acute lymphoblastic leukemia. J Clin Oncol, 2017,35(9):975-983.
[2] Marks D I, Paietta E M, Moorman A V , et al. T-cell acute lymphoblastic leukemia in adults:clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trial (UKALL XII/ECOG 2993). Blood, 2009,114(51):36-45.
[3] Goldberg J M, Silverman L B, Levy D E , et al. Childhood T-cell acute lymphoblastic leukemia:the dana-farber cancer institute acute lymphoblastic leukemia consortium experience. J Clin Oncol, 2003,21(36):16-22.
[4] Gardner R A, Finney O, Annesley C , et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood, 2017,129(25):3322-3331.
[5] Fry T J, Shah N N, Orentas R J , et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med, 2018,24(1):20-28.
[6] Mamonkin M, Rouce R H, Tashiro H , et al. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood, 2015,126(8):983-992.
[7] Brentjens R J, Santos E, Nikhamin Y , et al. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin Cancer Res, 2007,13(18 Pt 1):5426-5435.
[8] Maus M V, June C H . Making better chimeric antigen receptors for adoptive T-cell Therapy. Clin Cancer Res, 2016,22(8):1875-1884.
[9] Gross G, Gorochov G, Waks T , et al. Generation of effector T cells expressing chimeric T cell receptor with antibody type-specificity. Transplantation Proceedings, 1989,21(1):127-130.
[10] Kleinstiver B P, Pattanayak V, Prew M S , et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016,529(7587):490-495.
[11] Eyquem J, Mansilla-Soto J, Giavridis T , et al. Targeting a CAR to the TRAC locus with CRISPR Cas9 enhances tumour rejection. Nature, 2017,543(7643):113-117.
[12] MacLeod D T, Antony J, Martin A J , et al. Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells. Mol Ther, 2017,25(4):949-961.
[13] Morvan M G, Lanier L L . NK cells and cancer: You can teach innate cells new tricks. Nat Rev Cancer, 2016,16(1):7-19.
[14] Li Y, Hermanson D, Moriarity B , et al. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell, 2018,23(2):181-192.
[15] Bechan G, Lee D W, Zajonc D M , et al. Phage display generation of a novel human anti CD1a monoclonal antibody with potent cytolytic activity. Br J Haematol, 2012,159(3):299-310.
[16] Consonni M, Dellabona P, Casorati G . Potential advantages of CD1 restricted T cell mmunotherapy in cancer. Mol Immunol, 2018,103(4):200-208.
[17] Sánchez-Martínez, Matteo L Baroni . Fratricide-resistant CD1a-specific CAR T-cells for the treatment of cortical T cell acutelymphoblastic leukemia. Blood, 2019,133(21):2291-2304.
[18] Went P, Agostinelli C ,Gallamini A,et al.Marker expression in peripheral T-cell lymphoma:a proposed clinical-pathologic prognostic score. J Clin Oncol, 2006,24(16):2472-2479.
[19] Pui C H, Behm F G, Singh B , et al. Heterogeneity of presenting features and their relation to treatment outcome in 120 children with T-cell acute lymphoblastic leukemia. Blood, 1990,75(1):174-179.
[20] Maciocia P M, Wawrzyniecka P A, Philip B , et al. Targeting the T cell receptor β-chain constant region for immunotherapy of T cell malignancies. Nature Medicine, 2017,23(12):1416-1423.
[21] Onuoha S, Ferrari M, Bulek A , et al. Structure guided engineering of highly specific chimeric antigen receptors for the treatment of T cell lymphomas//2018 ASH Annual Meeting & Exposition, San Diego, CA , 2018.
[22] Went P, Agostinelli C, Gallamini A , et al. Marker expression in peripheral T-cell lymphoma:a proposed clinical-pathologic prognostic score. J Clin Oncol, 2006,24(16):2472-2479.
[23] Png Y T, Vinanica N, Kamiya T , et al. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies. Blood Adv, 2017,1(25):2348-2360.
[24] Diogo Gomes-Silva, Erden A, Pinar A A , et al. CD7 CAR T Cells for the Therapy of Acute Myeloid Leukemia. Molecular Therapy, 2019,27(1):272-280.
[25] Diogo Gomes-Silva, Madhuwanti S, Sandhya S , et al. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell alignancies. Blood, 2017,130(3):285-296.
[26] Cooper M L, Choi J, Staser K , et al. An “off-the-shelf” fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia, 2018,32(9):1970-1983.
[27] You F T, Wang Y Y, Jiang L C , et al. A novel CD7 chimeric antigen receptor-modified NK-92MI cell line targeting T-cell acute lymphoblastic leukemia. Am J Cancer Res, 2019,9(1):64-78.
[28] Chang Y H, Connolly J, Shimasaki N , et al. A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res, 2013,73(6):1777-1786.
[29] Bei R, Mizejewski G , et al. Alpha fetoprotein is more than a hepatocellular cancer biomarker: from spontaneous immune response in cancer patientsto the development of an AFP-based cancer vaccine. Current Molecular Medicine, 2011,11(7):564-581.
[30] Ruella M, Xu J, Barrett D M , et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat Med, 2018,24(10):1499-1503.
[1] 潘彤彤,陈永平. 重型/危重型新型冠状病毒肺炎关键治疗技术研究进展[J]. 中国生物工程杂志, 2020, 40(1-2): 78-83.