Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (9): 2-10    DOI: 10.13523/j.cb.20190901
研究报告     
28例急性巨核细胞白血病实验室检查结果分析 *
贺玲玲,骆婷婷,常艳,王亚哲,袁晓英,石韦华,赖悦云,石红霞,秦亚溱,黄晓军,刘艳荣()
北京大学人民医院 北京大学血液病研究所 北京 100044
Analysis on the Laboratory Examination Characteristics in 28 Patients with Acute Megakaryoblastic Leukemia
HE Ling-ling,LUO Ting-ting,CHANG Yan,WANG Ya-zhe,YUAN Xiao-ying,SHI Wei-hua,LAI Yue-yun,SHI Hong-xia,QIN Ya-zhen,HUANG Xiao-jun,LIU Yan-rong()
Institute of Hematology,People Hospital,Peking University,Beijing 100044 ,China
 全文: PDF(592 KB)   HTML
摘要:

目的: 分析急性巨核细胞白血病(AMKL)患者实验室检查特点。方法: 4管用8色抗体组合对28例AMKL患者的骨髓有核细胞进行免疫表型分析,同时结合分析患者骨髓细胞形态学、融合基因和染色体核型等检查结果。结果: 28例AMKL患者中阳性表达率较高的是巨核细胞相关抗体:CD41a、CD61、CD42b、CD36,阳性率分别为81.48%、92.86%、72.00%、70.83%,其中,CD41a、CD61、CD42b三种抗体共表达的患者占53.57%,至少表达两种抗体的患者占82.14%。髓系祖细胞相关标志:CD117、CD34、CD38、HLA-DR阳性表达率分别为64.29%、42.86%、64.29%和46.15%,与非APL的AML患者相比表达率均较低 (P<0.01);髓系全程抗原CD13、CD33在AMKL中阳性表达率与非APL的AML之间无统计学差异。髓系中后期抗原CD15及单核系抗原CD64、CD14、CD300e和胞浆抗原MPO、cCD79a和cCD3均阴性。与非Down综合征相关AMKL(non-DS-AMKL)相比,CD7与CD11b的表达在Down综合征相关AMKL(DS-AMKL)中较高(P <0.05)。AMKL患者中17例(65.4%)为复杂染色体核型,5例为+21染色体异常;仅5例患者核型正常。25例行白血病融合基因筛查,24例(96%)患者WT1基因表达增高(40.24±59.14%),12例患者(70.58%)EVI1基因表达增高(53.93±37.98%),4例患者融合基因阳性(2例MLL-AF9阳性,1例TLS-ERG,1例P210 BCL/ABL)。结论: AMKL中82.14%患者表达至少两种巨核细胞相关标志,髓系祖细胞标志表达相对较低,多为复杂染色体核型异常,WT1及EVI1异常表达率较高。

关键词: 急性巨核细胞白血病免疫表型分析流式细胞术    
Abstract:

Objective: To analyze the laboratory characteristics in patients with acute megakaryoblastic leukemia(AMKL).Methods: The immunophenotypes of leukemia cells in 28 patients with AMKL were analyzed by means of 4 tubes of 8 color panel. Meanwhile, bone marrow morphology,cell chemistry,chromosome karyotype and gene were examined.Results: Among 28 AMKL patients, the highest positive rates were macrokaryocyte-associated antibodies: CD41a, CD61, CD42b, CD36. The positive rates were 81.48%, 92.86%, 72.00% and 70.83%, respectively. Among them, 53.57% of the patients expressed CD41a, CD61 and CD42b, and 82.14% of the patients expressed at least two kinds of antibodies. The positive expression rates of CD117, CD34, CD38 and HLA-DR were 64.29%, 42.86%, 64.29% and 46.15% respectively, which were lower in AMKL patients than in non-APL patients (P< 0.01). There was no significant difference between the positive expression rates of CD13 and CD33 in AMKL and non-APL AML patients. CD15, CD64, CD14, CD300e and MPO, cCD79a and cCD3 were all negative. Compared with non-Down syndrome-related AMKL (non-DS-AMKL), the expression of CD7 and CD11b was higher in Down syndrome-related AMKL (DS-AMKL) (P < 0.05). Among AMKL patients, 17 (65.4%) had complex chromosome karyotypes and 5 had + 21 chromosome abnormalities; only 5 had normal karyotypes. Twenty-five leukemia patients were screened for fusion genes. WT1 gene expression increased in 24 patients (96%) and 12 patients (70.58%) with EVI1 gene expression increased (53.93 < 37.98%). Four patients were positive for fusion genes (2 MLL-AF9, 1 TLS-ERG and 1 P210 BCL/ABL).Conclusion: 82.14% of AMKL patients express at least two megakaryocyte-related markers. The expression of myeloid progenitor cell markers is relatively low, most of which are complex chromosomal karyotype abnormalities. The abnormal expression rates of WT1 and EVI1 are higher.

Key words: Acute megakaryoblastic leukemia    Immunophenotype    Flow cytometry
收稿日期: 2019-08-15 出版日期: 2019-09-20
ZTFLH:  Q291  
基金资助: * 国家重大科学仪器设备开发专项(2011YQ03013407)
通讯作者: 刘艳荣     E-mail: yrliu163@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
贺玲玲
骆婷婷
常艳
王亚哲
袁晓英
石韦华
赖悦云
石红霞
秦亚溱
黄晓军
刘艳荣

引用本文:

贺玲玲,骆婷婷,常艳,王亚哲,袁晓英,石韦华,赖悦云,石红霞,秦亚溱,黄晓军,刘艳荣. 28例急性巨核细胞白血病实验室检查结果分析 *[J]. 中国生物工程杂志, 2019, 39(9): 2-10.

HE Ling-ling,LUO Ting-ting,CHANG Yan,WANG Ya-zhe,YUAN Xiao-ying,SHI Wei-hua,LAI Yue-yun,SHI Hong-xia,QIN Ya-zhen,HUANG Xiao-jun,LIU Yan-rong. Analysis on the Laboratory Examination Characteristics in 28 Patients with Acute Megakaryoblastic Leukemia. China Biotechnology, 2019, 39(9): 2-10.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190901        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I9/2

抗体 抗体表达强度
强阳性(≥80%) 弱阳性(20%~80%) 阳性(≥20%)
CD41a 32.14(9) 46.43(13) 78.57(22/28)
CD61 21.42(6) 71.43(20) 92.86(26/28)
CD42b 21.43(6) 42.86(12) 64.29(18/28)
CD36 36.00(9) 32.00(8) 68.00(17/25)
CD34 21.43(6) 21.43(6) 42.86(12/28)
CD117 28.57(8) 35.71(10) 64.29(18/28)
CD38 39.29(11) 28.57(8) 67.86(19/28)
CD123 38.46(10) 11.54(3) 50.00(13/26)
HLA-DR 11.54(3) 34.62(9) 46.15(12/26)
CD33 60.71(17) 21.43(6) 82.14(23/28)
CD13 32.14(9) 17.86(5) 50.00(14/28)
CD7 10.71(3) 25.00(7) 35.71(10/28)
CD56 21.43(6) 7.14(2) 28.57(8/28)
CD11b 3.70(1) 29.63(8) 33.33(9/27)
CD11c 4.17(1) 12.50(3) 16.67(4/24)
CD4 17.39(4) 39.13(9) 56.52(13/23)
CD19 0(0) 7.14(2) 7.14(2/28)
CD10 0(0) 14.29(4) 14.29(4/28)
CD2 3.85(1) 3.85(1) 7.69(2/26)
表1  28例急性巨核细胞白血病患者抗体表达不同强度阳性率
巨核细胞特异性抗体 AMKL
阳性率(%) 异常巨核细胞占有核细胞比例(%)
CD41a+CD61+CD42b+ 53.57(15/28) 71.62(23.10~100.00)
CD41a+CD61+CD42b- 21.43(6/28) 54.63(30.01~81.30)
CD41a-CD61+CD42b+ 3.57(1/28) 50.00
CD41a+CD61-CD42b+ 3.57(1/28) 65.50
CD41a-CD61+CD42b- 14.29(4/28) 71.73(50.3~100.00)
CD41a-CD61-CD42b+ 3.57(1/28) 68.20
表2  28例急性巨核细胞白血病患者中巨核细胞特异性抗体组合表达阳性率
组别 CD117 CD34 HLA-DR CD38 CD13 CD33
非APL AML 94.85* 74.02* 90.67* 97.78* 66.42 79.51
(387/408) (302/408) (350/386) (132/135) (269/405) (322/405)
AMKL 64.29 42.86 46.15 64.29 50.00 82.14
(18/28) (12/28) (12/26) (18/28) (14/28) (23/28)
组别 CD64 CD11b CD15 CD19 CD56 CD7
非APL AML 55.15* 27.38 39.58* 11.28 39.07 29.25
(209/379) (89/325) (19/48) (45/399) (59/151) (117/400)
AMKL 0 33.33 0 7.14 28.57 35.71
(0/28) (9/27) (0/27) (2/28) (8/28) (10/28)
表3  各抗原在非APL的AML与AMKL患者中的表达阳性率比较
图1  原始巨核细胞形态
序号 性别 年龄
(岁)
骨髓增生
活跃程度
巨幼细胞
(%)
融合基因
X/abl(%)
染色体核型
1 0.1 38 WT1 38.0
EVI1 78.9
47,XX,t(3;12;16)(q26;13;24),der(17)t(1;17)(q21;p13),+21 [4] /47,idem,t(1,3)(q25;q21)[19]
2 0.6 83 WT1 32.1 46,XY[16]
3 0.9 38 WT1 24.8 48,XX,+2,del(15)(q15;q24),+19[10]
4 1.0 74 WT1 1.3
EVI1 49.8
46,Y,del(X)(q22),add(2)(q24),-7,del(9)(q22;q32),16qh+c,+mar1[3]/46,Y,-X,add(2)(q24),-7,del(9)(q22;q32),16qh+c,+mar1,+mar2[1]/46,XY, 16qh+c[7] 16qh+考虑为体质性异常
5 1.0 86 WT1 16.6 47,XX,-7,+21,+21[5]/47,XX,der(7;18)(q10;q10),+21,+21[9]
6 1.0 64 WT1 88.8 46,XY,add(9)(q34)[8]/46,idm,del(20)(p11)[2]
7 1.0 Ⅱ-Ⅲ 56 WT1 20.6 46,XY,del(13)(q12;q22)[2]/46,Y,t(X;12)(p11;q15),del(13)(q12;q22) [7]/46,XY, [1]
8 1.0 31 WT1 20.4
EVI1 36.1
48,XX,del(7)(q31),del(8)(q21;q22),+9,der(9),del(9)(q11;q13),del(9)(q22;q34)X2,+19[6]/47,idem,-21[6] /46,XX[8]
序号 性别 年龄
(岁)
骨髓增生
活跃程度
巨幼细胞
(%)
融合基因
X/abl(%)
染色体核型
9 1.0 22 MLL-AF9 8.4
WT1 6.1
EVI1 122.6
46,XY[16]
10 1.1 30 WT1 2.4
EVI1 61.9
48,XY,add(3)(p25),del(5)(q22;q35),+19,+mar[5]/48,idm,add(3)(q11)[8]/47,XY,add(3)(p25),del(5)(q22;q35),del(12)(p11),+19[2]/47,XY,der(3)add(3)(p25)add(3)(q11),del(5)(q22;q35),+19[5]/46,XY[4]
11 1.5 56 MLL-AF9 0.17 46,XY [20]
12 1.9 50 WT1 9.7
EVI1 101.3
49,XY,+4,+8,+10[1]/46,XY[2]
13 1.9 56 WT1 185.6 46,XY, [20]
14 2.0 39 WT1 16.0 50,XX,+8,+10,+21,+21[7]/46,XX[13]
15 2.0 Ⅱ-Ⅲ 35 WT1 10.0
EVI1 19.4
46,XY,t(1;11)(p32;q23),add(3)(q11),t(10;16)(q22;p13),inv(11)(p15;q13),del(20)(q11)[13]/47,XY,t(1;11),add(3),+8,t(10;16),inv(11) [4]/46,XY[3]
16 2.0 76 WT1 20.0
EVI1 96.1
46,XY,add(19)(p13)[1]/46,XY,der(2;3)(q10;p10),+3,inv(12)(q22;q24),15ps+[1]/46,XY[18] 15ps+考虑为体质性异常
17 2.0 31 WT1 57.2 47,XY,del(9)(q22;q32),+19[1]/46,XY[19]
18 2.0 22 - -
19 2.0 89 WT1 217.3 46,XY
20 2.0 81 WT1 33.8
EVI1 13.8
56,XY,+2,+2,+6,+7,+8,+10,+15,+19,+19,+20[10]
21 4.0 Ⅱ-Ⅲ 85 WT1 1.3
PRAME 244.7
45-50,XY,t(4;11)(q21;q23),+7,+8,+del(11)(q23),+del(11)(q23),del(20)(q11),+21 [cp6]
22 9.0 52 - 47,XY,+3 [5]/46,XY [15]
23 27.0 42 - -
24 40.0 97 TLS-ERG 342.2
WT1 141.7
48,Y,del(X)(q22),der(2)t(1;2)(q23;q37),del(9)(q22;q32),+10,-13,+14,t(16;21)(p11;q22),+mar[5]/46,XY, [4]
25 47.0 Ⅲ-Ⅳ 74 WT1 2.4
EVI1 15.7
PRAME 2.0
44-50,XY,+del(1)(p13),del(1)(q21),dic(1;2)(q21;p25),+2,add(4)(p16),+add(4)(p16),-5,+6,der(11),t(1;11)(q21;q23),add(13)(q34),add(15)(p13),+add(15)(p13),dic(17;19)(p13;q13),+18,add(19)(q13),+21,add(22)(p13),+mar\(cp5)/47,XY,+17 [1]/46,XY [9]
26 52.0 71 WT1 5.1
PREAME 2.0
EVI1 14.3
41-42,XY,t(1;5)(q32;q31),t(3;22)(q21;p11),-6,-7,del(8)(q21),add(9)(q34),-12,-14,-17,add(19)(p13),-22,+2mar [cp3]/46,XY [7]
27 62.0 61 WT1 11.2
EVI1 37.3
42-43,XY,+X,+Y,del(1),(q41),add(5)(q11),-7,-9,-13,add(14)(p13),-16,-18,add(18)(p11),-21,+mar1-mar3 [cp10]
28 69.0 21 WT1 3.3
BCR/ABL(P210) 34.9
46,XX,t(9;22;22)(q34;q11;q13)[1]/46,xx,t(9;22)(q34;q11)[5]
表4  28例急性巨核细胞白血病患者临床资料及实验室检查结果
[1] Hama A, Hiroshi Y, Yoshiyuki T , et al. Acute megakaryoblastic leukaemia (AMKL) in children:acomparison of AMKL with and without Down syndrome. British Journal of Haematology, 2008,140(5):552-561.
[2] Tallman M S, Donna N, John M , et al. Acute megakaryocytic leukemia: the Eastern Cooperative Oncology Group experience. Blood, 2000. 96(7):2405-2411.
[3] Savasan S, Steven B, Susana C , et al. CD36 (thrombospondin receptor) expression in childhood acute megakaryoblastic leukemia:In vitro drug sensitivity and outcome. Leukemia & Lymphoma, 2009,47(10):2076-2083.
[4] 刘艳荣, 王亚哲, 陈姗姗 , 等. 610例急性髓系白血病免疫表型和白血病相关免疫表型分析. 中华血液学杂志, 2007,28(11):731-736.
Liu Y R, Wang Y Z, Chen S S , et al. Analysis of immunophenotype and leukemia associated immunophenotypein 610 patients with acute myeloid leukemia. Chin J Hematol, 2007,28(11):731-736.
[5] Huang S, Yang H, Li Y , et al. Prognostic significance of mixed-lineage leukemia (MLL) gene detected by real-time fluorescence quantitative pcr assay in acute myeloid leukemia. Medical Science Monitor, 2016,22(1):3009-3017.
[6] 欧阳敏, 许兰平, 王昱 , 等, t(16;21)(pll;q22)急性髓系白血病九例报告并文献复习. 中华血液学杂志, 2016,37(3):210-215.
Ouyang M, Xu L P, Wang Y , et al. Clinical characteristics of acute myeloid leukemia with t(16;21)(p11;q22):nine cases report and literature review. Chin J Hematol, 2016,37(3):210-215.
[7] Chisholm K M, Rivetta C V, Heerema M . PRAME immunohistochemical staining in transient abnormal myelopoiesis and myeloid leukemia associated with Down syndrome. Ann Clin Lab Sci, 2015,45(2):121-127.
[8] Qin Y, Zhu H, Jiang B , et al. Expression patterns of WT1 and PRAME in acute myeloid leukemia patients and their usefulness for monitoring minimal residual disease. Leukemia Research, 2009. 33(3):384-390.
doi: 10.1016/j.leukres.2008.08.026
[9] Wang L, John M P, Franklin F , et al. Acute megakaryoblastic leukemia associated with trisomy 21 demonstrates a distinct immunophenotype. Cytometry Part B: Clinical Cytometry, 2015,88(4):244-252.
[10] Malinge S , Shai Izraeliand J D,Crispino. Insights into the manifestations, outcomes, and mechanisms of leukemogenesis in Down syndrome. Blood, 2009,113(12):2619-2628.
[11] Teruschka C, Ntsakisi I M, Zaheer L , et al. Acute megakaryoblastic leukaemia: light microscopy and scanning electron microscopy of blast cells. British Journal of Haematology, 2017,176(5):686-686.
[12] Bluteau D, Lordier L, Distefano A , et al. Regulation of megakaryocyte maturation and platelet formation. Journal of Thrombosis and Haemostasis, 2009,7(Suppl.1):227-234.
[13] Bourquin J P, Aravind S, Claudia L , et al. Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(9):3339-3344.
[14] Elizabeth M, Jad S, Julia T G , et al. A Novel variant t(1;22) translocation -ins(22;1)(q13;p13p31)-in a child with acute megakaryoblastic leukemia. American Journal of Case Reports, 2017,18(1):422-426.
[15] Erin E D, Erica K S, Alexandra M S , et al. Acute megakaryoblastic leukemia with diffuse periosteal reaction of bilateral lower extremities. Journal of Pediatric Hematology/ Oncology, 2019. 41(2):e90-e93.
[16] Wen Q, Benjamin G, Serena J , et al. Identification of regulators of polyploidization presents therapeutic targets for treatment of AMKL. Cell, 2012. 150(3):575-589.
doi: 10.1016/j.cell.2012.06.032
[17] Federico D M, Marito A, Norio K . Molecular features, prognosis, and novel treatment options for pediatric acute megakaryoblastic leukemia. Expert Review of Hematology, 2019,12(5):285-293.
[18] Sun X, Lu B, Han C , et al. ANP32A dysregulation contributes to abnormal megakaryopoiesis in acute megakaryoblastic leukemia. Blood Cancer Journal, 2017,7(12):661.
[19] Meyer C, Hofmann J, Burmeister T , et al. The MLL recombinome of acute leukemias in 2013. Leukemia, 2013,27(1):2165-2176.
[20] Inaba H, Zhou Y, Abla O , et al. Heterogeneous cytogenetic subgroups and outcomes in childhood acute megakaryoblastic leukemia:a retro-spective international study. Blood, 2015,126(13 ): 1575-1584.
[21] Junko T, Ai M, Katsuyoshi K , et al. Acute megakaryoblastic leukemia in a child with the MLL-AF4 fusion gene. European Journal of Haematology, 2009,83(2):149-153.
[22] Dong W J, Myungshin K, Jihyang L , et al. CD56 antigen expression and hemophagocytosis of leukemic cells in acute myeloid leukemia with t(16;21)(p11;q22). International Journal of Hematology, 2010,92(2):306-313.
doi: 10.1007/s12185-010-0650-5
[23] Delia D, Liana O, Ana-Maria R , et al. Adult acute megakaryoblastic leukemia: rare association with cytopenias of undetermined significance and p210 and p190 BCR-ABL transcripts. OncoTargets and Therapy, 2017,10(1):5047-5051.
[24] Xiao M, Zhang N, Liu Y , et al. De novo acute megakaryoblastic leukemia with p210 BCR/ABL and t(1;16) translocation but not t(9;22) Ph chromosome. Journal of Hematology & Oncology, 2011,4(5):45-51.
[25] Jochen G, Mark R, Oliver S , et al. Simultaneous expression of different immunogenic antigens in acute myeloid leukemia. Experimental Hematology, 2000,28(12):1413-1422.
[1] 赵四书,刘露,刘芳,仇海荣,范磊,李建勇,吴雨洁. CD11c在慢性淋巴细胞白血病诊断中的意义 *[J]. 中国生物工程杂志, 2019, 39(9): 19-24.
[2] 惠怡华,王海娜,戚宇锋,曹雪玲,管雪梅,段静静,段轶鋆,王艳峰,苏文. 山西省健康成年人淋巴细胞亚群正常参考值范围 *[J]. 中国生物工程杂志, 2019, 39(9): 41-49.
[3] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[4] 彭贤贵,杨武晨,李佳,苟阳,王平,刘思恒,张云,李艺,张曦. 细胞形态相关技术在血液系统肿瘤中的应用 *[J]. 中国生物工程杂志, 2019, 39(9): 84-90.
[5] 孟坤, 何庆瑜, 王通, 卢少华. 基于C6流式细胞仪平台应用FRET技术在活细胞中研究蛋白质相互作用[J]. 中国生物工程杂志, 2017, 37(5): 45-51.
[6] 魏金梅, 范小琴, 熊海庭, 高学娟, 刘小会, 刘朗夏. hnRNPK与Nef相互作用并有利于细胞表面CD4的表达[J]. 中国生物工程杂志, 2015, 35(4): 17-22.
[7] 陈海霞, 高文远, 李静, 耿美玉, 管华诗. 肿瘤与正常细胞表面糖链结构的流式细胞术分析[J]. 中国生物工程杂志, 2005, 25(6): 80-83.
[8] 谢小梅, 许杨. 流式细胞术[J]. 中国生物工程杂志, 2003, 23(9): 100-104.