
hnRNPK与Nef相互作用并有利于细胞表面CD4的表达
魏金梅, 范小琴, 熊海庭, 高学娟, 刘小会, 刘朗夏
中国生物工程杂志 ›› 2015, Vol. 35 ›› Issue (4) : 17-22.
hnRNPK与Nef相互作用并有利于细胞表面CD4的表达
hnRNPK Interacts with Nef and Facilitates the Cell Surface Expression of CD4
目的:前期不同的研究分别证明HIV蛋白Nef下调宿主细胞表面受体CD4的表达,以及Nef与宿主细胞蛋白heterogeneous nuclear ribonucleoprotein K (hnRNPK)存在相互作用。因此提出了两个值得研究探讨的重要问题:(1)hnRNPK是否参与调节细胞表面CD4的表达?(2)Nef是否通过hnRNPK调节细胞表面CD4的表达?方法:利用半体外GST-pulldown技术验证Nef与hnRNPK存在相互作用。通过瞬时转染的方式将HIV-1Nef表达在HeLa-CD4细胞里,同时利用siRNA干扰技术敲低hnRNPK,最后运用流式细胞技术检测细胞表面CD4的表达水平。结果:(1)GST-pulldown结果验证了Nef与hnRNPK存在相互作用;(2)Nef的表达使细胞表面CD4水平下降约75%;(3)不管是否有Nef,hnRNPK的敲低都使细胞表面CD4表达水平明显下降(50%);同样的,Nef下调CD4的作用也不受hnRNPK敲低的影响。结论:(1)hnRNPK与Nef相互作用;(2)hnRNPK 有利于细胞表面CD4的表达,其与Nef的下调作用的关系尚不明确,Nef对CD4的下调作用可能涉及有其他因素参与的复杂调控。
Objective: Previous studies have respectively demonstrated that HIV-1 Nef down-regulated the cell surface expression of CD4, and that Nef interacted with the host protein hnRNPK. The purpose is to investigate (1) if hnRNPK regulates the surface expression of CD4, and (2) if hnRNPK is involved in the down-regulation of CD4 by HIV-1 Nef. Methods: in vitro GST-pulldown assay was used to confirm the interaction of HIV-1 Nef with hnRNPK. HIV-1 Nef was expressed in HeLa-CD4 cells by transient transfection, hnRNPK was knocked down by means of siRNA, and the cell surface expression level of CD4 was assessed by using flow cytometry. Results: (1) The GST-pulldown assay has successfully confirmed the Nef-hnRNPK interaction; (2) Nef ectopic expression resulted in about 75 percent reduction of the cell surface CD4 expression; (3) hnRNPK knockdown reduced dramatically the cell surface expression of CD4(50% of reduction) regardless Nef was present or not. Similarly, the effect of Nef on the cell surface expression of CD4 was not affected by hnRNPK knockdown. Conclusion: (1) hnRNPK interacts with Nef; (2) hnRNPK facilitates the cell surface expression of CD4, but the relationship between this effect and the down-regulation of CD4 expresion by Nef remains unclear, probably reflecting the complex regulation involving other factors.
分子生物学 / Nef / CD4 / hnRNPK / 流式细胞术 {{custom_keyword}} /
Molecular Biology / Nef / CD4 / hnRNPK / Flow cytometry {{custom_keyword}} /
[1] Kestler H W, Ringler D J, Mori K, et al. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell, 1991, 65(4): 651-662.
[2] Amorim N A, da Silva E M, de Castro R O, et al. Interaction of HIV-1 Nef protein with the host protein Alix promotes lysosomal targeting of CD4 receptor. The Journal of Biological Chemistry, 2014, 289(40): 27744-27756.
[3] Baur A S. HIV-Nef and AIDS pathogenesis: are we barking up the wrong tree? Trends Microbiol, 2011, 19(9): 435-440.
[4] Jere A, Fujita M, Adachi A, et al. Role of HIV-1 Nef protein for virus replication in vitro. Microbes and Infection/Institut Pasteur, 2010, 12(1): 65-70.
[5] Grzesiek S, Stahl S J, Wingfield P T, et al. The CD4 determinant for downregulation by HIV-1 Nef directly binds to Nef. Mapping of the Nef binding surface by NMR. Biochemistry, 1996, 35(32): 10256-10261.
[6] Arganaraz E R, Schindler M, Kirchhoff F, et al. Enhanced CD4 down-modulation by late stage HIV-1 nef alleles is associated with increased env incorporation and viral replication. Journal Of Biological Chemistry, 2003, 278(36): 33912-33919.
[7] Hanna Z, Priceputu E, Hu C Y, et al. HIV-1 Nef mutations abrogating downregulation of CD4 affect other Nef functions and show reduced pathogenicity in transgenic mice. Virology, 2006, 346(1): 40-52.
[8] Haller C, Rauch S, Michel N, et al. The HIV-1 pathogenicity factor Nef interferes with maturation of stimulatory T-lymphocyte contacts by modulation of N-Wasp activity. The Journal of Biological Chemistry, 2006, 281(28): 19618-19630.
[9] Renkema G H, Manninen A, Mann D A, et al. Identification of the Nef-associated kinase as p21-activated kinase 2. Current Biology: CB, 1999, 9(23): 1407-1410.
[10] Asamitsu K, Morishima T, Tsuchie H, et al. Conservation of the central proline-rich (PxxP) motifs of human immunodeficiency virus type 1 Nef protein during the disease progression in two hemophiliac patients. Febs Lett, 2000, 467(2-3): 366.
[11] Saksela K, Cheng G, Baltimore D. Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. The EMBO Journal, 1995, 14(3): 484-491.
[12] Tsai P L, Chiou N T, Kuss S, et al. Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing. Plos Pathog, 2013, 9(6):e1003460.
[13] Szczyrba J, Nolte E, Hart M, et al. Identification of ZNF217, hnRNP-K, VEGF-A and IPO7 as targets for microRNAs that are downregulated in prostate carcinoma. International Journal of Cancer, 2013, 132(4): 775-784.
[14] Bomsztyk K, Denisenko O, Ostrowski J. hnRNP K: one protein multiple processes. BioEssays, 2004, 26(6): 629-638.
[15] Liepelt A, Mossanen J C, Denecke B, et al. Translation control of TAK1 mRNA by hnRNP K modulates LPS-induced macrophage activation. Rna, 2014, 20(6): 899-911.
[16] Ciarlo M, Benelli R, Barbieri O, et al. Regulation of neuroendocrine differentiation by AKT/hnRNPK/AR/beta-catenin signaling in prostate cancer cells. International Journal of Cancer, 2012, 131(3): 582-590.
[17] Yoo Y, Wu X, Egile C, et al. Interaction of N-WASP with hnRNPK and its role in filopodia formation and cell spreading. The Journal of Biological Chemistry, 2006, 281(22): 15352-15360.
[18] Liu Y Y, Szaro B G. hnRNP K post-transcriptionally co-regulates multiple cytoskeletal genes needed for axonogenesis. Development, 2011, 138(14): 3079-3090.
[19] Nagano K, Bornhauser B C, Warnasuriya G, et al. PDGF regulates the actin cytoskeleton through hnRNP-K-mediated activation of the ubiquitin E(3)-ligase MIR. EMBO Journal, 2006, 25(9): 1871-1882.
[20] Li L P, Lu C H, Chen Z P, et al. Subcellular proteomics revealed the epithelial-mesenchymal transition phenotype in lung cancer. Proteomics, 2011, 11(3): 429-439.
[21] Wolf D, Witte V, Clark P, et al. HIV Nef enhances Tat-mediated viral transcription through a hnRNP-K-nucleated signaling complex. Cell Host Microbe, 2008, 4(4): 398-408.
[22] Greenway A L, Holloway G, McPhee D A, et al. HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication. J Biosciences, 2003, 28(3): 323-335.
[23] Witte V, Laffert B, Rosorius O, et al. HIV-1 Nef mimics an integrin receptor signal that recruits the polycomb group protein Eed to the plasma membrane. Mol Cell, 2004, 13(2): 179-190.
[24] Wolf D, Giese S I, Witte V, et al. Novel (n)PKC kinases phosphorylate Nef for increased HIV transcription, replication and perinuclear targeting. Virology, 2008, 370(1): 45-54.
[25] Aiken C, Konner J, Landau N R, et al. Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain. Cell, 1994, 76(5): 853-864.
[26] Kornilova E S. Receptor-mediated endocytosis and cytoskeleton. Biochemistry-Moscow, 2014, 79(9): 865-878.
[27] de Hoog C L, Foster L J, Mann M. RNA and RNA binding proteins participate in early stages of cell spreading through spreading initiation centers. Cell, 2004, 117(5): 649-662.
/
〈 |
|
〉 |