Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (7): 56-64    DOI: 10.13523/j.cb.20190708
技术与方法     
小球藻与固氮菌Mesorhizobium sp.共培养对小球藻生长和油脂积累的促进效果 *
卫治金,李晓,王皓楠,尹永浩,郗丽君,葛保胜()
中国石油大学(华东)生物工程与技术中心 青岛 266580
Enhanced Biomass Production and Lipid Accumulation by Co-cultivation of Chlorella vulgaris with Azotobacter Mesorhizobium sp.
Zhi-jin WEI,Xiao LI,Hao-nan WANG,Yong-hao YIN,Li-jun XI,Bao-sheng GE()
Center for Bioengineering and Biotechnology,China University of Petroleum (East China),Qingdao 266580,China
 全文: PDF(1046 KB)   HTML
摘要:

微藻油脂不仅可以作为功能油脂,同时也是生产生物柴油的重要原料之一。为解决微藻生长与油脂积累之间的矛盾,利用藻菌共培养技术在缺氮条件下将无菌小球藻与细菌以不同初始比例进行共培养,通过测定藻细胞生物量、油脂含量和脂肪酸比例等来研究藻菌共培养对小球藻生长和油脂积累的影响。结果表明,在小球藻与固氮菌B2.3 70∶1(V/V)共培养体系中,小球藻的生物量和油脂含量较同样条件下单独培养小球藻有了显著提高。其生物量最高可达1.68g/L、总脂含量为45.2%、总脂产率为75.94 mg/(L·d)、中性脂含量为23.0%及中性脂产率为38.65mg/(L·d),其生物量和油脂含量分别较单独小球藻培养时提高了66.3%和47.7%。同时细菌的加入显著提高了藻细胞内C18∶1脂肪酸的比例。结论表明,通过藻菌共培养技术能够有效提高微藻生物油脂的质量和产量,具有较好的实际利用价值。

关键词: 藻菌共培养小球藻生物量油脂积累    
Abstract:

Microalgal oil is an important functional oil, but also one of the major sources for bio-diesel production. In order to solve the contradiction of algae growth and lipid accumulation, the Chlorella vulgaris were co-cultured with azotobacter at different initial ratio under nitrogen source deficiency conditions, and the impact of consortium system growth, lipid accumulation based on the dry weight, lipid content, and fatty acids composition in the incubation period were evaluated. The results showed that the biomass and lipid content of algae were significantly higher than that of the pure culture of axenic C.vulgaris when C. vulgaris and B2.3 strains were inoculated at the ratio of 70∶1. The biomass, lipid content, lipid productivity, neutral lipid content and neutral lipid productivity of algae in the co-cultures were 1.68g/L, 45.2%, 75.94mg/(L·d), 23.0% and 38.65mg/(L·d), respectively. And the biomass concentration and lipid content in the co-culture system were 66.3% and 47.7% higher than that of the axenic pure algal cultures, respectively. Furthermore, the consortium system significantly increased the proportion of C18∶1 fatty acids. It was indicated that the co-cultivation of algae-bacteria system can effectively contribute to the quality and quantity of microalgal bio-oil, and has great potential for production of bio-diesel.

Key words: Co-culture    Chlorella vulgaris    Biomass    Lipid accumulation
收稿日期: 2018-12-06 出版日期: 2019-08-05
ZTFLH:  Q819  
基金资助: * 国家重点研发计划资助项目(2016YFE0106700)
通讯作者: 葛保胜     E-mail: gebaosheng@upc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
卫治金
李晓
王皓楠
尹永浩
郗丽君
葛保胜

引用本文:

卫治金,李晓,王皓楠,尹永浩,郗丽君,葛保胜. 小球藻与固氮菌Mesorhizobium sp.共培养对小球藻生长和油脂积累的促进效果 *[J]. 中国生物工程杂志, 2019, 39(7): 56-64.

Zhi-jin WEI,Xiao LI,Hao-nan WANG,Yong-hao YIN,Li-jun XI,Bao-sheng GE. Enhanced Biomass Production and Lipid Accumulation by Co-cultivation of Chlorella vulgaris with Azotobacter Mesorhizobium sp.. China Biotechnology, 2019, 39(7): 56-64.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190708        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I7/56

图1  小球藻与Mesorhizobium sp.共培养10d后小球藻生物量和比生长速率的变化
图2  小球藻与Mesorhizobium sp.共培养10d后小球藻总脂含量及产率的变化
图3  小球藻与Mesorhizobium sp.共培养10d后小球藻中性脂含量及产率的变化
图4  小球藻与Mesorhizobium sp.共培养10d后小球藻脂肪酸比例的变化
图5  小球藻与Mesorhizobium sp.共培养10d胞外多聚物中蛋白质浓度的变化
图6  小球藻与Mesorhizobium sp.共培养10d后胞外多聚物中多糖浓度的变化
[1] Subashchandrabose S R, Ramakrishnan B, Megharaj M , et al. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnology Advances, 2011,29(6):896-907.
doi: 10.1016/j.biotechadv.2011.07.009
[2] Wang S, Wang X, Tao H , et al. Heterotrophic culture of Chlorella pyrenoidosa using sucrose as the sole carbon source by co-culture with immobilized yeast. Bioresource Technology, 2018,249:425-430.
doi: 10.1016/j.biortech.2017.10.049
[3] 宋东辉, 侯李君, 施定基 . 生物柴油原料资源高油脂微藻的开发利用. 生物工程学报, 2008,24(3):341-348.
Song D H, Hou L J, Shi D J . Exploitation and utilization of rich lipids-microalgae, as new lipids feedstock for biodiesel production-a review. Chinese Journal of Biotechnology, 2008,24(3):341-348.
[4] Brennan L, Owende P . Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 2010,14(2):557-577.
doi: 10.1016/j.rser.2009.10.009
[5] Georgianna D R, Mayfield S P . Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 2012,488(7411):329-335.
[6] Sayre R . Microalgae: the potential for carbon capture. Bioscience, 2010,60(9):722-727.
doi: 10.1525/bio.2010.60.9.9
[7] Shu C, Tsai C, Chen K , et al. Enhancing high quality oil accumulation and carbon dioxide fixation by a mixed culture of Chlorella sp. and Saccharomyces cerevisiae. Journal of The Taiwan Institute of Chemical Engineers, 2013,44(6):936-942.
doi: 10.1016/j.jtice.2013.04.001
[8] 姜进举, 苗凤萍, 冯大伟 , 等. 微藻生物柴油技术的研究现状及展望. 中国生物工程杂志, 2010,30(2):134-140.
doi: Q945.11;TK6
Jiang J J, Miao F P, Feng D W , et al. Research situation and prospect of microalgae biodiesel. China Biotechnology, 2010,30(2):134-140.
doi: Q945.11;TK6
[9] Dash A, Banerjee R . Enhanced biodiesel production through phyco-myco co-cultivation of Chlorella minutissima and Aspergillus awamori:an integrated approach. Bioresource Technology, 2017,238:502-509.
doi: 10.1016/j.biortech.2017.04.039
[10] 刘金丽, 王俊峰, 刘天中 , 等. 缺氮条件对栅藻油脂积累与光合作用的影响. 海洋科学, 2013,37(7):13-19.
Liu J L, Wang J F, Liu T Z , et al. The effects of nitrogen starvation on lipid accumulation and photosynthesis of Scenedesmus dimorphus. Marine Sciences, 2013,37(7):13-19.
[11] 左正三, 孙小曼, 任路静 , 等. 微藻生产油脂培养新技术. 中国生物工程杂志, 2018,38(7):102-109.
Zuo Z S, Sun X M, Ren L J , et al. Improvement of lipid accumulation in microalgae by novel cultivation strategies. China Biotechnology, 2018,38(7):102-109.
[12] 刘天中, 张维, 王俊峰 , 等. 微藻规模培养技术研究进展. 生命科学, 2014,26(5):509-522.
Liu T Z, Zhang W, Wang J F , et al. A review of mass cultivation technology for microalgae. Chinese Bulletin of Life Sciences, 2014,26(5):509-522.
[13] Wang R, Tian Y, Xue S , et al. Enhanced microalgal biomass and lipid production via co‐culture of Scenedesmus obliquus and Candida tropicalis in an autotrophic system. Journal of Chemical Technology and Biotechnology, 2016,91(5):1387-1396.
doi: 10.1002/jctb.2016.91.issue-5
[14] Ramanan R, Kim B H, Cho D H , et al. Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnology Advances, 2016,34(1):14-29.
doi: 10.1016/j.biotechadv.2015.12.003
[15] Yang L, Tan X, Li D , et al. Nutrients removal and lipids production by Chlorella pyrenoidosa cultivation using anaerobic digested starch wastewater and alcohol wastewater. Bioresource Technology, 2015,181:54-61.
doi: 10.1016/j.biortech.2015.01.043
[16] Guan S, Chen W, Wang E , et al. Mesorhizobium caraganae sp. nov, a novel rhizobial species nodulated with Caragana spp. in China. International Journal of Systematic and Evolutionary Microbiology, 2008,58(11):2646-2653.
doi: 10.1099/ijs.0.65829-0
[17] Porra R J, Thompson W A, Kriedemann P E . Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimicaet Biophysica Acta (BBA) - Bioenergetics, 1989,975(3):384-394.
doi: 10.1016/S0005-2728(89)80347-0
[18] Bligh E G, Dyer W J . A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 1959,37(8):911-917.
doi: 10.1139/y59-099
[19] 宋琪, 李泉, 邴欣 , 等. 尼罗红-荧光光谱法测定亚心形扁藻油脂含量. 中国油脂, 2016,41(10):98-101.
Song Q, Li Q, Bing X , et al. Determination of lipid content in Platymonas subcordiformis by Nile red-fluorescence spectrometry. China Oils and Fats, 2016,41(10):98-101.
[20] Klock J H, Wieland A, Seifert R , et al. Extracellular polymeric substances (EPS) from cyanobacterial mats: characterisation and isolation method optimisation. Marine Biology, 2007,152(5):1077-1085.
doi: 10.1007/s00227-007-0754-5
[21] Bradford M M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976,72(1-2):248-254.
doi: 10.1016/0003-2697(76)90527-3
[22] Dubois M, Gilles K A, Hamilton J K , et al. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956,28(3):350-356.
doi: 10.1021/ac60111a017
[23] Xu L, Cheng X, Wang Q . Enhanced lipid production in Chlamydomonas reinhardtii by co-culturing with Azotobacter chroococcum. Frontiers in Plant Science, 2018,9:741-753.
doi: 10.3389/fpls.2018.00741
[24] Courchesne N M D, Parisien A, Wang B , et al. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Journal of Biotechnology, 2009,141(1-2):31-41.
doi: 10.1016/j.jbiotec.2009.02.018
[25] Casadevall E, Dif D, Largeau C , et al. Studies on batch and continuous cultures of Botryococcus braunii: hydrocarbon production in relation to physiological state,cell ultrastructure,and phosphate nutrition. Biotechnology and Bioengineering, 1985,27(3):286-295.
doi: 10.1002/(ISSN)1097-0290
[26] Papanikolaou S, Komaitis M , Aggelis G. single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresource Technology, 2004,95(3):287-291.
doi: 10.1016/j.biortech.2004.02.016
[27] Yamaberi K, Takagi M, Yoshida T . Nitrogen depletion for intracellular triglyceride accumulation to enhance liquefaction yield of marine microalgal cells into a fuel oil. Journal of Marine Biotechnology, 1998,6:44-48.
[28] Tang D, Han W, Li P , et al. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 2011,102(3):3071-3076.
doi: 10.1016/j.biortech.2010.10.047
[29] Wang R, Xue S, Zhang D , et al. construction and characteristics of artificial consortia of Scenedesmus obliquus-bacteria for S.obliquus growth and lipid production. Algal Research, 2015,12:436-445.
doi: 10.1016/j.algal.2015.10.002
[30] Gui M M, Lee K T, Bhatia S . feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy, 2008,33(11):1646-1653.
doi: 10.1016/j.energy.2008.06.002
[31] Knothe G . will biodiesel derived from algal oils live up to its promise? A fuel property assessment. Lipid Technology, 2011,23(11):247-249.
doi: 10.1002/lite.v23.11
[32] Munoz R, Kollner C, Guieysse B . biofilm photobioreactors for the treatment of industrial wastewaters. Journal of Hazardous Materials, 2009,161(1):29-34.
doi: 10.1016/j.jhazmat.2008.03.018
[33] Gardes A, Iversen M H, Grossart H P , et al. diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. International Society for Microbial Ecology, 2011,5(3):436-445.
[1] 周琳, 汪靓, 高娟, 赵权宇, 魏伟, 孙予罕. 进化与未进化小球藻响应苯酚的转录组学分析[J]. 中国生物工程杂志, 2017, 37(7): 72-79.
[2] 杨凯, 战景明, 高芬芳, 武宝利, 苏丽霞, 周文明, 薛向明, 郝杰, 赵阳. 小球藻用于生物柴油生产的研究进展[J]. 中国生物工程杂志, 2015, 35(11): 99-104.
[3] 汪桂林, 桂小华, 邓伟, 赵志良, 姚杰, 闫云君. “异养-胁迫”分段培养对原始小球藻生物量和油脂含量影响研究[J]. 中国生物工程杂志, 2013, 33(3): 99-104.
[4] 杨秋玲, 季静, 王罡, 武卫党, 霍培. 导入八氢番茄红素合酶和番茄红素β-环化酶基因的玉米后代性状分析[J]. 中国生物工程杂志, 2012, 32(12): 52-58.
[5] 胡文军, 罗玮, 李汉广, 顾秋亚, 余晓斌. 产油微藻筛选和鉴定及其产油性能的研究[J]. 中国生物工程杂志, 2012, 32(12): 66-72.
[6] 杨琪, 王科荣, 孔维宝, 杨红, 曹海, 张馨允. 响应面法优化普通小球藻混合营养培养基组成生产生物质[J]. 中国生物工程杂志, 2012, 32(09): 70-75.
[7] 冯迪娜, 艾江宁, 刘亚男, 陈兆安, 薛松, 张卫. 含氮类培养基对海洋微藻Isochrysis zhanjiangensis 油脂与碳水化合物积累的影响[J]. 中国生物工程杂志, 2011, 31(10): 29-34.
[8] 李涛, 李爱芬, 桑敏, 吴洪, 尹顺吉, 张成武. 富油能源微藻的筛选及产油性能评价[J]. 中国生物工程杂志, 2011, 31(04): 98-105.
[9] 张齐, 高振, 黄和, 梁西海, 纪晓俊, 郑洪立, 尹丰伟. 氧化铝气体分布器应用小球藻培养的研究[J]. 中国生物工程杂志, 2011, 31(03): 61-65.
[10] 郑洪立 高振 黄和 纪晓俊 白跃华 李文琦. 响应面法优化自养小球藻产生物柴油油脂[J]. 中国生物工程杂志, 2010, 30(08): 106-111.
[11] 王海英,曾晓波,郭祀远. 磁处理对小球藻生长及抗氧化系统的影响[J]. 中国生物工程杂志, 2007, 27(2): 85-89.
[12] . 制造业、生物加工[J]. 中国生物工程杂志, 1998, 18(S1): 29-38.
[13] . 海洋生物技术和水产养殖技术[J]. 中国生物工程杂志, 1998, 18(S1): 39-49.
[14] 陈颖, 李文彬, 孙勇如. null[J]. 中国生物工程杂志, 1998, 18(6): 11-15.
[15] 唐赢中, 黄利群, 严国安. 藻类产烃研究进展[J]. 中国生物工程杂志, 1997, 17(2): 22-25.