Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (6): 91-96    DOI: 10.13523/j.cb.20190613
研究报告     
谷氨酸棒状杆菌异源合成萜类化合物的研究进展 *
徐硕,卢文玉()
天津大学化工学院生物工程系 系统生物工程教育部重点实验室 天津化学化工协同创新中心合成生物学平台 天津 300072
Progress of Heterologous Biosynthesis of Terpenoids in Engineered Corynebacterium glutamicum
Shuo XU,Wen-yu LU()
Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering, Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
 全文: PDF(499 KB)   HTML
摘要:

萜类化合物具有可观的商业价值,但生产过程复杂,产量低,利用微生物异源合成萜类化合物已成为热点。谷氨酸棒状杆菌内含合成萜类色素的途径,具有异源合成萜类化合物的天然优势和研究前景。首次对谷氨酸棒状杆菌合成萜类化合物进行了综述,从萜类合成途径、关键酶和全局调控机制三个方面进行了途经介绍。概述了谷氨酸棒状杆菌中单萜、倍半萜、四萜类化合物的异源合成,并对利用谷氨酸棒状杆菌高效合成萜类化合物所需解决的问题进行讨论,为谷氨酸棒状杆菌高效合成萜类化合物提供建议。

关键词: 谷氨酸棒状杆菌萜类异源合成    
Abstract:

Terpenoids have considerable commercial value, but the production process is complex and the yield is low. It has become a hot spot to synthesize terpenoids from microorganism. Corynebacterium glutamicum contains a pathway to produce carotenoid, which is a natural advantage for the synthesis of terpenoids heterologously. The synthesis of terpenoids from C. glutamicum is summarized, including the terpenoids synthesis pathway in C. glutamicum, key enzymes and global regulatory mechanisms in this pathway. And the advances in this pathway in synthesis of monoterpenes, sesquiterpenes, and tetraterpenes are summarized. The problems and advice efficient synthesis of terpenoids by C. glutamicum is discussed.

Key words: Corynebacterium glutamicum    Terpenoids    Heterologous biosynthesis
收稿日期: 2018-11-02 出版日期: 2019-07-12
ZTFLH:  Q819  
基金资助: * 国家自然科学基金资助项目(21878220)
通讯作者: 卢文玉     E-mail: wenyulu@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐硕
卢文玉

引用本文:

徐硕,卢文玉. 谷氨酸棒状杆菌异源合成萜类化合物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 91-96.

Shuo XU,Wen-yu LU. Progress of Heterologous Biosynthesis of Terpenoids in Engineered Corynebacterium glutamicum. China Biotechnology, 2019, 39(6): 91-96.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190613        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I6/91

图1  谷氨酸棒状杆菌萜类化合物生物合成途径
[1] Kirby J, Keasling J D . Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annual Review of Plant Biology, 1958,60(1):335-355.
[2] Chirumbolo S, Bjorklund G . The antinociceptive activity of geraniol. Basic & Clinical Pharmacology & Toxicology, 2017,120(2):105-107.
[3] Wei H H, Zhang H L , Xing-Tai L I . Research progress in pharmacological activities of ginsenoside Re. Journal of Dalian Minzu University, 2018,48(15):1233-1237.
[4] Motallebnejad M, Molania T, Moghadamnia A A , et al. Antioxidant effect of lycopene on oral mucositis in gamma radiation protection in rats (A preliminary study). Journal of Mazandaran University of Medical Sciences, 2018,27(159):137-142.
[5] Rohmer M . The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep, 1999,16(5):565-574.
doi: 10.1039/a709175c
[6] Rodríguez-Concepción M, Boronat A . Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiology, 2002,130(3):1079-1089.
doi: 10.1104/pp.007138
[7] 陈鹏飞 . 植物中萜类化合物的提取方法研究进展. 中文信息, 2017,20(2):259.
Chen P F . Progress in extraction of terpenoids from plants. Chinese Information, 2017,20(2):259.
[8] Lin S C, Chein R J . Total synthesis of the labdane diterpenes galanal A and B from geraniol. Journal of Organic Chemistry, 2017,82(3):1575-1583.
doi: 10.1021/acs.joc.6b02766
[9] Wu W, Liu F, Davis R W . Engineering Escherichia coli for the production of terpene mixture enriched in caryophyllene and caryophyllene alcohol as potential aviation fuel compounds. Metabolic Engineering Communications, 2018,6:13-21.
doi: 10.1016/j.meteno.2018.01.001
[10] Lee J Y, Na Y A, Kim E , et al. The actinobacterium Corynebacterium glutamicum, an industrial workhorse. Journal of Microbiology & Biotechnology, 2016,26(5):807.
[11] Heider S A, Peters-Wendisch P, Beekwilder J , et al. IdsA is the major geranylgeranyl pyrophosphate synthase involved in carotenogenesis in Corynebacterium glutamicum. Febs Journal, 2015,281(21):4906-4920.
[12] Heider S A E, Petra P W, Wendisch V F . Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiology, 2012,12(1):198-198.
doi: 10.1186/1471-2180-12-198
[13] Heider S A E, Wolf N, Hofemeier A , et al. Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum. Frontiers in Bioengineering & Biotechnology, 2014,2:28.
[14] Lee M, Gräwert T, Quitterer F , et al. Biosynthesis of isoprenoids: crystal structure of the [4Fe-4S] cluster protein IspG. Journal of Molecular Biology, 2010,404(4):600-610.
doi: 10.1016/j.jmb.2010.09.050
[15] Gräwert T, Kaiser J, Zepeck F , et al. IspH protein of Escherichia coli: studies on iron-sulfur cluster implementation and catalysis. Journal of the American Chemical Society, 2004,126(40):12847-12855.
doi: 10.1021/ja0471727
[16] Xiao Y, Zhao Z K, Liu P . Mechanistic studies of IspH in the deoxyxylulose phosphate pathway: heterolytic C-O bond cleavage at C4 position. Journal of the American Chemical Society, 2008,130(7):2164-2165.
doi: 10.1021/ja710245d
[17] Tripathi L, Zhang Y, Lin Z . Bacterial Sigma factors as targets for engineered or synthetic transcriptional control. Frontiers in Bioengineering & Biotechnology, 2014,2:33.
[18] Taniguchi H, Henke N A , Heider S A E , et al. Overexpression of the primary sigma factor gene sigA, improved carotenoid production by Corynebacterium glutamicum: Application to production of β-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin. Metabolic Engineering Communications, 2017,4:1-11.
doi: 10.1016/j.meteno.2017.01.001
[19] Vranová E, Coman D, Gruissem W . Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annual Review of Plant Biology, 2013,64(1):665.
doi: 10.1146/annurev-arplant-050312-120116
[20] Krubasik P, Kobayashi M, Sandmann G . Expression and functional analysis of a gene cluster involved in the synthesis of decaprenoxanthin reveals the mechanisms for C50 carotenoid formation. Febs Journal, 2010,268(13):3702-3708.
[21] Henke N A, Sae H, Hannibal S , et al. Isoprenoid pyrophosphate-dependent transcriptional regulation of carotenogenesis in Corynebacterium glutamicum. Frontiers in Microbiology, 2017,8:633.
doi: 10.3389/fmicb.2017.00633
[22] Brennan T C, Turner C D, Krömer J O , et al. Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnology & Bioengineering, 2012,109(10):2513-2522.
[23] Kang M K, Eom J H, Kim Y , et al. Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum. Biotechnology Letters, 2014,36(10):2069-2077.
doi: 10.1007/s10529-014-1578-2
[24] Girhard M, Machida K, Itoh M , et al. Regioselective biooxidation of (+)-valencene by recombinant E. coli, expressing CYP109B1 from Bacillus subtilis, in a two-liquid-phase system. Microbial Cell Factories, 2009,8(1):36.
doi: 10.1186/1475-2859-8-36
[25] Frohwitter J , Heider S A E, Peters-Wendisch P , et al. Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum. Journal of Biotechnology, 2014,191:205-213.
doi: 10.1016/j.jbiotec.2014.05.032
[26] Heider S A, Peterswendisch P, Wendisch V F , et al. Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Applied Microbiology & Biotechnology, 2014,98(10):4355-4368.
[27] Clinton S K . Lycopene: chemistry, biology, and implications for human health and disease. Nutrition Reviews, 2010,56(2):35-51.
[28] Matano C, Uhde A, Youn J W , et al. Engineering of Corynebacterium glutamicum, for growth and l -lysine and lycopene production from N -acetyl-glucosamine. Appl Microbiol Biotechnol, 2014,98(12):5633-5643.
doi: 10.1007/s00253-014-5676-9
[29] Hadiati A, Krahn I, Lindner S N , et al. Engineering of Corynebacterium glutamicum, for growth and production of L-ornithine, L-lysine, and lycopene from hexuronic acids. Bioresources & Bioprocessing, 2014,1(1):25.
[30] Grimmig B, Kim S H, Nash K , et al. Neuroprotective mechanisms of astaxanthin: a potential therapeutic role in preserving cognitive function in age and neurodegeneration. Geroscience, 2017,39(1):1-14.
doi: 10.1007/s11357-016-9954-6
[31] Henke N A , Heider S A E, Peters-Wendisch P , et al. Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum. Marine Drugs, 2016,14(7):124.
doi: 10.3390/md14070124
[32] Wandrey G, Bier C, Binder D , et al. Light-induced gene expression with photocaged IPTG for induction profiling in a high-throughput screening system. Microbial Cell Factories, 2016,15(1):63.
doi: 10.1186/s12934-016-0461-3
[33] Binder D, Frohwitter J, Mahr R , et al. Light-controlled cell factories: employing photocaged isopropyl-β-d-thiogalactopyranoside for light-mediated optimization of lac promoter-based gene expression and (+)-valencene biosynthesis in Corynebacterium glutamicum. Appl Environ Microbiol, 2016,82(20):6141-6149.
doi: 10.1128/AEM.01457-16
[34] Kim S K, Han G H, Seong W , et al. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metabolic Engineering, 2016,38:228-240.
doi: 10.1016/j.ymben.2016.08.006
[35] Yu J, Qian F, Yang J , et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nature Communications, 2017,8:15179.
[36] Jiang G Z, Yao M D, Ying W , et al. Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae. Metabolic Engineering, 2017,41:57-66.
doi: 10.1016/j.ymben.2017.03.005
[37] Liu H, Zhang W, Gong G , et al. Biosynthesis of squalene by introducing hybrid MVA pathway in Escherichia coli. Chinese Journal of Pharmaceuticals, 2017,48(1):982-990.
[38] Ohto C, Muramatsu M, Obata S , et al. Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae, for production of prenyl alcohols. Applied Microbiology & Biotechnology, 2009,82(5):837.
[39] Kirby J, Nishimoto M, Park J G , et al. Cloning of casbene and neocembrene synthases from Euphorbiaceae plants and expression in Saccharomyces cerevisiae. Phytochemistry, 2010,71(13):1466-1473.
doi: 10.1016/j.phytochem.2010.06.001
[40] Reuse S, Calao M, Kabeya K , et al. Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection. PLoS One, 2009,4(6):e6093.
doi: 10.1371/journal.pone.0006093
[1] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[2] 张中素, 杨瑞刚, 朱凌云, 吴小敏. 提高微生物合成萜类化合物产量的策略[J]. 中国生物工程杂志, 2017, 37(1): 97-103.
[3] 赵爽, 刘柳, 吴林寰, 马俊才. 谷氨酸棒状杆菌技术研发态势分析[J]. 中国生物工程杂志, 2016, 36(9): 101-109.
[4] 张强, 李大帅, 卢文玉. 大肠杆菌异源合成三萜化合物研究进展和前景分析[J]. 中国生物工程杂志, 2016, 36(11): 83-89.
[5] 周妮 朱莉 郎志宏 黄大昉. 萜类化合物在植物间接防御中的作用[J]. 中国生物工程杂志, 2010, 30(07): 0-0.
[6] 黄瑛,曾庆平. 萜类生物合成的基因操作[J]. 中国生物工程杂志, 2006, 26(01): 60-64.
[7] 罗明典. 中文标题[J]. 中国生物工程杂志, 1985, 5(4): 1-5.