Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (11): 83-89    DOI: 10.13523/j.cb.20161112
综述     
大肠杆菌异源合成三萜化合物研究进展和前景分析
张强, 李大帅, 卢文玉
天津大学化工学院生物工程系 系统生物工程教育部重点实验室 天津化学化工协同创新中心合成生物学平台 天津 300072
Progress and Prospect of Heterologous Biosynthesis of Ttriterpenoids in Engineered Escherichia coli
ZHANG Qiang, LI Da shuai, LU Wen yu
Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering, Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
 全文: PDF(582 KB)   HTML
摘要:

三萜化合物具有可观的药用价值和经济价值,但是目前的生产过程复杂、产量低,利用微生物异源合成三萜化合物已成为当前研究趋势,大肠杆菌作为常用萜类合成底盘细胞具有异源合成三萜化合物及其前体的天然优势和研究前景。对三萜化合物微生物异源合成研究进展进行了综述,从三萜化合物合成代谢途径、关键酶的特点及大肠杆菌三萜表达模块和底盘细胞适配三个方面对该途径进行了阐述和分析,针对实现大肠杆菌高效合成三萜类化合物所需要解决的基础问题进行讨论,为扩展大肠杆菌作为三萜化合物合成底盘细胞提供建议和前景分析。

关键词: 大肠杆菌合成生物学三萜化合物异源合成    
Abstract:

Triterpenoids are the major pharmacologically active constituents of many medicinal plants, which exhibit potential economic value. Currently, triterpenoids are mainly produced through their extraction from plants which is complicated, time-consuming, labour intensive and produce relatively low yields. Escherichia coli as a commonly used recombinant microbial system has the ability to generate valuable natural products, so, heterologous biosynthesis of triterpenoids or precursors in E. coli presents an attractive system. Research progress of heterologous biosynthesis of triterpenoids is summarized, including metabolic pathway, key enzymes and optimization of E. coli chassis and introduction of functional modules. Basic problems on efficient synthesis of triterpenoids in E. coli are discussed and a prospect of using E. coli as a new chassis of biosynthesis of triterpenoids is analyzed.

Key words: Synthetic biology    Heterologous biosynthesis    Escherichia coli    Triterpenoids
收稿日期: 2016-04-21 出版日期: 2016-11-25
ZTFLH:  Q93-91  
基金资助:

国家“973”计划资助项目(2012CB721105)

通讯作者: 卢文玉,wenyulu@tju.edu.cn     E-mail: wenyulu@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张强, 李大帅, 卢文玉. 大肠杆菌异源合成三萜化合物研究进展和前景分析[J]. 中国生物工程杂志, 2016, 36(11): 83-89.

ZHANG Qiang, LI Da shuai, LU Wen yu. Progress and Prospect of Heterologous Biosynthesis of Ttriterpenoids in Engineered Escherichia coli. China Biotechnology, 2016, 36(11): 83-89.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20161112        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I11/83

[1] Phillips D R, Rasbery J M, Bartel B, et al. Biosynthetic diversity in plant triterpene cyclization. Current Opinion in Plant Biology, 2006, 9(3):305-314.
[2] Watanabe K. Proceedings:effective use of heterologous hosts for characterization of biosynthetic enzymes allows production of natural products and promotes new natural product discovery. The Japanese journal of antibiotics, 2015, 68(1):55-67.
[3] Thimmappa R, Geisler K, Louveau T, et al. Triterpene biosynthesis in plants. Annual Review of Plant Biology, 2014, 65(1):225-257.
[4] Hoshino T,Sato T.Squalene-hopene cyclase:catalytic mechanism and substrate recognition. Chemical Communications, 2002,33(4):291-301.
[5] Augustin J M, Kuzina V, Andersen S B, et al. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry, 2011, 72(6):435-457.
[6] Facchini P J, Bohlmann J, Covello P S, et al. Synthetic biosystems for the production of high-value plant metabolites. Trends in Biotechnology, 2012, 30(3):127-131.
[7] Thimmappa R, Geisler K, Louveau T, et al. Triterpene biosynthesis in plants. Annual Review of Plant Biology, 2014, 65(1):225-257.
[8] Dai Z, Liu Y, Zhang X, et al. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metabolic Engineering, 2013, 20(5):146-156.
[9] Dai Z, Wang B, Liu Y, et al. Producing aglycons of ginsenosides in bakers' yeast. Scientific Reports, 2014, 4(4):3698.
[10] Zhao F, Bai P, Liu T, et al. Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2016,113(8):1787-1795.
[11] Yan X, Fan Y, Wei W, et al. Production of bioactive ginsenoside compound K in metabolically engineered yeast. Cell Research, 2014, 24(6):770-773.
[12] Wang P, Wei Y, Fan Y, et al. Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts. Metabolic Engineering, 2015, 29:97-105.
[13] Moses T, Pollier J, Almagro L, et al. Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16α hydroxylase from Bupleurum falcatum. Proceedings of the National Academy of Sciences, 2014, 111(4):1634-1639.
[14] Davidovich-Rikanati R, Shalev L, Baranes N, et al. Recombinant yeast as a functional tool for understanding bitterness and cucurbitacin biosynthesis in watermelon (Citrullus spp.). Yeast, 2015, 32(1):103-114.
[15] Huang L, Li J, Ye H, et al. Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus. Planta, 2012, 236(5):1571-1581.
[16] Li D, Zhang Q, Zhou Z, et al. Heterologous biosynthesis of triterpenoid dammarenediol-Ⅱ in engineered Escherichia coli. Biotechnology Letters, 2016, 38(4):1-7.
[17] Katabami A, Li L, Iwasaki M, et al. Production of squalene by squalene synthases and their truncated mutants in Escherichia coli. Journal of Bioscience and Bioengineering, 2015, 119(2):165-171.
[18] Laden B P, Tang Y,Porter T D. Cloning, heterologous expression, and enzymological characterization of human squalene monooxygenase. Archives of Biochemistry and Biophysics, 2000, 374(2):381-388.
[19] Jiang M, Stephanopoulos G, Pfeifer B A. Toward biosynthetic design and implementation of Escherichia coli-derived paclitaxel and other heterologous polyisoprene compounds. Applied and Environmental Microbiology, 2012, 78(8):2497-2504.
[20] Leonard E,Koffas M G.Engineering of artificial plant cytochrome P450 enzymes for synthesis of iIsoflavones by Escherichia coli. Applied and Environmental Microbiology, 2007, 73(22):7246-7251.
[21] Ajikumar P K, Xiao W H, Tyo K E, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science, 2010, 330(6000):70-74.
[22] Tsuruta H, Paddon C J, Eng D, et al. High-level production of amorpha-4, 11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One, 2009, 4(2):e4489.
[23] Tansakul P, Shibuya M, Kushiro T, et al. Dammarenediol-Ⅱ synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng. FEBS Letters, 2006, 580(22):5143-5149.
[24] Li J,Zhang Y.Increase of betulinic acid production in Saccharomyces cerevisiae by balancing fatty acids and betulinic acid forming pathways. Applied Microbiology and Biotechnology, 2014, 98(7):3081-3089.
[25] Fukushima E O, Seki H, Ohyama K, et al. CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis. Plant and Cell Physiology, 2011, 52(12):2050-2061.
[26] Shibuya M, Zhang H, Endo A, et al. Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases. European Journal of Biochemistry, 1999, 266(1):302-307.
[27] Castillo D A, Kolesnikova M D, Matsuda S P. An effective strategy for exploring unknown metabolic pathways by genome mining. Journal of the American Chemical Society, 2013, 135(15):5885-5894.
[28] Field B, Fiston-Lavier AS, Kemen A, et al. Formation of plant metabolic gene clusters within dynamic chromosomal regions. Proceedings of the National Academy of Sciences, 2011, 108(38):16116-16121.
[29] Fukushima E O, Seki H, Ohyama K, et al. CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis. Plant and Cell Physiology, 2011, 52(12):2050-2061.
[30] Ba L, Li P, Zhang H, et al. Semi-rational engineering of cytochrome P450sca-2 in a hybrid system for enhanced catalytic activity:Insights into the important role of electron transfer. Biotechnology and Bioengineering, 2013, 110(11):2815-2825.
[31] Fasan R, Crook N C, Peters M W, et al. Improved product-per-glucose yields in P450-dependent propane biotransformations using engineered Escherichia coli. Biotechnology and Bioengineering, 2011, 108(3):500-510.
[32] Li S, Podust L M,Sherman D H.Engineering and analysis of a self-sufficient biosynthetic cytochrome P450 PikC fused to the RhFRED reductase domain. Journal of the American Chemical Society, 2007, 129(43):12940-12941.
[33] Shen A L, Porter T, Wilson T, et al. Structural analysis of the FMN binding domain of NADPH-cytochrome P-450 oxidoreductase by site-directed mutagenesis. Journal of Biological Chemistry, 1989, 264(13):7584-7589.
[34] Venkateswarlu K, Lamb D C, Kelly D E, et al. The N-terminal membrane domain of yeast NADPH-cytochrome P450(CYP) oxidoreductase is not required for catalytic activity in sterol biosynthesis or in reconstitution of CYP activity. Journal of Biological Chemistry, 1998, 273(8):4492-4496.
[35] Sadeghi S J,Gilardi G.Chimeric P450 enzymes:activity of artificial redox fusions driven by different reductases for biotechnological applications. Biotechnology and Applied Biochemistry, 2013, 60(1):102-110.
[36] Meesapyodsuk D, Balsevich J, Reed D W, et al. Saponin biosynthesis in Saponaria vaccaria cDNAs encoding β-amyrin synthase and a triterpene carboxylic acid glucosyltransferase. Plant Physiology, 2007, 143(2):959-969.
[37] Naoumkina M A, Modolo L V, Huhman D V, et al. Genomic and coexpression analyses predict multiple genes involved in triterpene saponin biosynthesis in Medicago truncatula. The Plant Cell, 2010, 22(3):850-866.
[38] Wang J, Li S, Xiong Z, et al. Pathway mining-based integration of critical enzyme parts for de novo biosynthesis of steviolglycosides sweetener in Escherichia coli. Cell Research, 2015,26(2):1-4.
[39] Peralta-Yahya P P, Ouellet M, Chan R, et al. Identification and microbial production of a terpene-based advanced biofuel. Nature Communications, 2011, 2(9):2749-2763.
[40] Sliva A, Yang H, Boeke J D, et al. Freedom and responsibility in synthetic genomics:The Synthetic yeast project. Genetics, 2015, 200(4):1021-1028.

[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[3] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[4] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[5] 何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.
[6] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[7] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[8] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[9] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[10] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[11] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[12] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[13] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[14] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[15] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.