Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (1): 97-103    DOI: 10.13523/j.cb.20170114
综述     
提高微生物合成萜类化合物产量的策略
张中素, 杨瑞刚, 朱凌云, 吴小敏
国防科学技术大学理学院化学与生物学系 长沙 410073
Strategies for Improving The Yield of Microbial Terpenoids Production
ZHANG Zhong-su, YANG Rui-gang, ZHU Ling-yun, WU Xiao-min
Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha 410073, China
 全文: PDF(526 KB)   HTML
摘要:

萜类化合物种类繁多、结构复杂,在医药、能源等领域具有重要的应用价值。当前萜类化合物主要是从植物中提取或化学法合成,费效比较高,而微生物合成成本低、效率高,更具有发展潜力,但由于萜类代谢通路复杂、微生物自身代谢调控精细以致难以人为操控,多数萜类化合物尚未通过微生物合成获得可观的产量。对此,对提高微生物合成萜类化合物的策略进行综述,旨在为萜类化合物在微生物中的生产与研究提供参考。

关键词: 萜类化合物代谢通路提高产量微生物合成    
Abstract:

Terpenoids, a family of compounds with a wide range of diversity and structural complexity, play important roles in the fields of pharmaceutics and energy. The terpenoid compounds are mainly extracted from plants or chemically synthesized, which are both cost-effectiveness. On contrary, the economic and efficient way of microbial synthesis is more promising. However, due to the complexity of theterpenoidsynthesis pathway and the difficult manipulation of the host metabolic networks, most terpenoid compounds have notbiologically synthesized inan agreeable yield. Here,the strategies for improving the yield of microbial terpenoids production.

Key words: Terpenoids    Microbial synthesis    Production improvement    Metabolic pathway
收稿日期: 2016-09-27 出版日期: 2017-01-25
ZTFLH:  Q946.8  
基金资助:

国防科技大学科研计划资助项目(ZK16-03-13,JC14-02-09,JC14-09-03)

通讯作者: 吴小敏     E-mail: wuxiaomin@nudt.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张中素, 杨瑞刚, 朱凌云, 吴小敏. 提高微生物合成萜类化合物产量的策略[J]. 中国生物工程杂志, 2017, 37(1): 97-103.

ZHANG Zhong-su, YANG Rui-gang, ZHU Ling-yun, WU Xiao-min. Strategies for Improving The Yield of Microbial Terpenoids Production. China Biotechnology, 2017, 37(1): 97-103.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170114        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I1/97

[1] Breitmaier E. Terpenes:Flavors, Fragrances, Pharmaca, Pheromones. New Jersey:Wiley-VCH, 2006.
[2] Nemere I, Pietras R J, Blackmore P F. Membrane receptors for steroid hormones:signal transduction and physiological significance. Journal of Cellular Biochemistry, 2003, 88(3):438-445.
[3] Howitt C A, Pogson B J. Carotenoid accumulation and function in seeds and non-green tissues. Plant Cell & Environment, 2006, 29(3):435-445.
[4] Berry S. The chemical basis of membrane bioenergetics. Journal of Molecular Evolution, 2002, 54(5):595-613.
[5] Tippmann S, Chen Y, Siewers V, et al. From flavors and pharmaceuticals to advanced biofuels:Production of isoprenoids in Saccharomyces cerevisiae. Biotechnology Journal, 2013, 8(12):1435-1444.
[6] Chang M C, Keasling J D. Production of isoprenoid pharmaceuticals by engineered microbes. Nature Chemical Biology, 2006, 2(12):674-681.
[7] 杨金玲, 高丽丽, 朱平. 人参皂苷生物合成研究进展. 药学学报, 2013,48(2):170-178. Yang J L,Gao L L,Zhu P.Advances in the biosynthesis research of ginsenosides. Acta Pharmaceutica Sinica,2013,48(2):170-178.
[8] Keasling J D. Synthetic biology and the development of tools for metabolic engineering. Metabolic Engineering, 2012, 14(3):189-195.
[9] Ajikumar P K, Tyo K, Carlsen S, et al. Terpenoids:opportunities for biosynthesis of natural product drugs using engineered microorganisms. Molecular Pharmaceutics, 2008, 5(2):167-190.
[10] Rohmer M, Knani M, Simonin P, et al. Isoprenoid biosynthesis in bacteria:a novel pathway for the early steps leading to isopentenyl diphosphate. Biochemical Journal, 1993, 295(Pt 2)(1):517-524.
[11] Lichtenthaler H K. Non-mevalonate isoprenoid biosynthesis:enzymes, genes and inhibitors. Biochemical Society Transactions, 2000, 28(6):785-789.
[12] Kuzuyama T. Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Bioscience Biotechnology & Biochemistry, 2002, 66(8):1619-1627.
[13] Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496(7446):528-532.
[14] Westfall P J, Pitera D J, Lenihan J R, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proceedings of the National Academy of Sciences, 2012, 109(3):E111-E118.
[15] Sarria S, Wong B, García M H, et al. Microbial synthesis of pinene. Acs Synthetic Biology, 2014, 3(7):466-475.
[16] Tashiro M, Kiyota H, Kawainoma S, et al. Bacterial production of pinene by a laboratory-evolved pinene-synthase. Acs Synthetic Biology, 2016.
[17] Yang J, Nie Q, Ren M, et al. Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene. Biotechnology for Biofuels, 2013, 6(1):1-10.
[18] Beekwilder J, Houwelingen A V, Cankar K, et al. Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene. Plant Biotechnology Journal, 2014, 12(2):174-182.
[19] Jongedijk E, Cankar K, Ranzijn J, et al. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae. Yeast, 2014, 32(1):159-171.
[20] Sasaki K, Ohara K, Yazaki K. Gene expression and characterization of isoprene synthase from Populus alba. Febs Letters, 2005, 579(11):2514-2518.
[21] Schnitzler J, Zimmer I, Bachl A, et al. Biochemical properties of isoprene synthase in poplar (Populus x canescens). Planta, 2005, 222(5):777-786.
[22] Zurbriggen A, Kirst H, Melis A. Isoprene production via the mevalonic acid pathway in Escherichia coli (Bacteria). Bioenergy Research, 2012, 5(4):814-828.
[23] Fiona, Bentley, Andreas, et al. Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Molecular Plant, 2014, 7(1):71-86.
[24] Ajikumar P K, Xiao W H, Tyo K E J, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science, 2010, 330(6000):70-74.
[25] Lv X, Xu H, Yu H. Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli. Applied Microbiology & Biotechnology, 2013, 97(6):2357-2365.
[26] Kim S W, Keasling J D. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnology & Bioengineering, 2001, 72(4):408-415.
[27] Matthews P D, Wurtzel E T. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Applied Microbiology & Biotechnology, 2000, 53(4):396-400.
[28] Yuan L Z, Rouvière P E, Larossa R A, et al. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metabolic Engineering, 2006, 8(1):79-90.
[29] Chen Y, Siewers V, Nielsen J. Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae. PLoS One, 2012, 7(8):599-602.
[30] Yun C, Daviet L, Schalk M, et al. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metabolic Engineering, 2013, 15(1):48-54.
[31] Shiba Y, Paradise E M, Kirby J, et al. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metabolic Engineering, 2007, 9(2):160-168.
[32] Krivoruchko A, Serrano-Amatriain C, Yun C, et al. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. Journal of Industrial Microbiology & Biotechnology, 2013, 40(9):1051-1056.
[33] Kocharin K, Yun C, Siewers V, et al. Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae. Amb Express, 2012, 2(1):1-11.
[34] Kozak B U, Rossum H M V, Benjamin K R, et al. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metabolic Engineering, 2014, 21(1):46-59.
[35] Farmer W R, Liao J C. Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnology Progress, 2001, 17(1):57-61.
[36] Martin V J J, Pitera D J, Withers S T, et al. Engineering a mevalonate pathway in Escherichia coli forproduction of terpenoids. Nature Biotechnology, 2003, 21(7):796-802.
[37] Pitera D J, Paddon C J, Newman J D, et al. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metabolic Engineering, 2007, 9(2):193-207.
[38] Zhou Y J, Gao W, Rong Q, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. Journal of the American Chemical Society, 2012, 134(6):3234-3241.
[39] Xu P, Gu Q, Wang W, et al. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nature Communications, 2013, 4(1):273-275.
[40] Wu J, Du G, Zhou J, et al. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metabolic Engineering, 2013, 16(1):48-55.
[41] Gao X, Gao F, Liu D, et al. Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy & Environmental Science, 2016, 9(4):1400-1411.
[42] Dueber J E, Wu G C, Malmirchegini G R, et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nature Biotechnology, 2009, 27(8):753-759.
[43] Conrado R J, Wu G C, Boock J T, et al. DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Research, 2012, 40(4):1879-1889.
[44] Delebecque C J, Aldaye F A. Organization of intracellular reactions with rationally designed RNA assemblies. Science, 2011, 333(6041):470-474.
[45] Farhi M, Marhevka E, Masci T, et al. Harnessing yeast subcellular compartments for the production of plant terpenoids. Metabolic Engineering, 2011, 13(5):474-481.
[46] Hammer K, Mijakovic I, Jensen P R. Synthetic promoter libraries-tuning of gene expression. Trends in Biotechnology, 2006, 24(2):53-55.
[47] Miksch G, Bettenworth F K, Flaschel E, et al. Libraries of synthetic stationary-phase and stress promoters as a tool for fine-tuning of expression of recombinant proteins in Escherichia coli. Journal of Biotechnology, 2005, 120(1):25-37.
[48] Smolke C D, Martin V J J, Keasling J D. Controlling the metabolic flux through the carotenoid pathway using directed mRNA processing and stabilization. Metabolic Engineering, 2001, 3(4):313-321.
[49] Salis H M, Mirsky E A, Voigt C A. Automated design of synthetic ribosome binding sites to control protein expression. Nature Biotechnology, 2009, 27(10):946-950.
[50] Zhang F, Carothers J M, Keasling J D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nature Biotechnology, 2012, 30(4):354-359.
[51] Robert H D, Zhang F I, Alonsogutierrez J, et al. Engineering dynamic pathway regulation using stress-response promoters. Nature Biotechnology, 2013, 31(11):1039-1046.
[52] Asadollahi M A, Maury J, K M, et al. Production of plant sesquiterpenes in Saccharomyces cerevisiae:Effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnology & Bioengineering, 2008, 99(3):666-677.
[53] Brennan T C R, Turner C D, Kr mer J O, et al. Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnology & Bioengineering, 2012, 109(10):2513-2522.
[54] Chang M C, Eachus R A, Trieu W, et al. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nature Chemical Biology, 2007, 3(5):274-277.

[1] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[2] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[3] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.
[4] 赵莹, 刘津, 王长松, 赵广荣. 微生物合成黄酮类研究进展[J]. 中国生物工程杂志, 2014, 34(4): 110-117.
[5] 何彰华, 王洋, 赵珺, 刘晓杰, 张丽华, 王东, 师明磊, 黄芬, 尤平, 赵志虎. 一种多基因串联共表达载体的构建[J]. 中国生物工程杂志, 2011, 31(01): 40-45.
[6] 乔宝义. 微生物合成塑料——聚羟基链烷酯[J]. 中国生物工程杂志, 1990, 10(6): 43-46.
[7] 罗明典. 干扰素(IFN)研究在我国的发展[J]. 中国生物工程杂志, 1990, 10(2): 61-63.
[8] 柯为. 苏联用基因工程技术创建高产人生长激素微生物[J]. 中国生物工程杂志, 1985, 5(3): 75-75.