Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (4): 84-93    DOI: 10.13523/j.cb.20190411
综述     
棕色脂肪细胞特异基因PRDM16的研究进展与展望 *
姬凯茜1,2,焦丹1,2,谢忠奎1,2,杨果1,2**(),段子渊3**()
1 中国科学院西北生态环境资源研究院 兰州 730000
2 中国科学院大学 北京 100049
3 中国科学院遗传与发育生物学研究所 北京 100101
Advances and Prospects of Brown Adipocyte-Specific Gene PRDM16
Kai-xi JI1,2,Dan JIAO1,2,Zhong-kui XIE1,2,Guo YANG1,2**(),Zi-yuan DUAN3**()
1 Northwest Institute of Eco- Environment and Resources, CAS, Lanzhou 730000, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
 全文: PDF(729 KB)   HTML
摘要:

PR结构域蛋白16(PR domain-containing 16,PRDM16)是棕色脂肪细胞分化过程的重要转录因子,其对维持棕色脂肪细胞的特殊形态特征及细胞功能具有重要的作用。PRDM16不仅能调控棕色脂肪细胞的分化,而且可能是脂肪细胞和肌细胞相互转化的“开关”,还与白色脂肪细胞的米色化过程相关。研究发现,人和家畜的PRDM16基因具有丰富的SNPs位点,这些SNPs位点与人类疾病和家畜生产性状之间存在着一定的相关性。鉴于PRDM16在脂肪分化和人类健康等方面的重要性,综述了近十几年来国内外研究者在PRDM16基因与PRDM16蛋白的结构与功能、该基因与疾病和家畜经济性状的相关性等方面的研究成果,并展望了PRDM16的未来研究方向与在人类疾病治疗和动物性状改良方面的应用前景。

关键词: PR结构域蛋白16蛋白质结构生物学功能调控机制多态性    
Abstract:

PRDM16(PR domain-containing 16) is a 16th member of PR domain family, was firstly found in a patient with leukemia and was initially thought to be related to myelodysplastic syndrome(MDS) and chronic myelogenous leukemia(CML). PRDM16 contains six important functional domains, including PR domain(PR), zinc finger domain 1(ZF-1), proximal regulatory region(PRR), repression domain(RD), zinc finger domain 2(ZF-2), and acidic activation domain(AD), respectively. The ablation of PR domain which is an exclusive domain for PRDM family has been linked to MDS and CML; the domains of ZF-1 and ZF-2 are capable to bind to peroxisome proliferator-activated receptor-α/γ(PPAR-α/γ), CCAAT-enhancer binding proteins-β(CEBP-β), peroxisome proliferator-activated receptor-γ coactivator1-α/β(PGC1-α/β) and mediator complex subunit 1(MED1); the RD domain is main site for PRDM16 to bind with C-terminal binding protein-1/2(CtBP-1/2). In mammals, the PRDM16 is involved in a spectrum of biological processes including cell fate determination and development. The PRDM16 is capable to regulate transcription via intrinsic chromatin-modifying, complexing with histone-modifying. Studies have shown the pivotal roles of PRDM16 in the determination and functions of brown and beige fat cell, as well as in thermogenesis, hematopoiesis and cardiac development. Studies indicated that PRDM16 is a key transcriptional regulator in differentiation of the brown adipocytes. PRDM16 has been found has an important role in maintaining “brown fat cell-specific” morphological properties and biological functions, as well as in association with high abundant mitochondria contents and its thermogenesis capacity. PRDM16 controls a “bidirectional cell fate switch” for skeletal myoblasts and brown fat cells. It involves in a “browning” process in white adipose tissues, which transform white adipocytes into brown/beige adipocytes. PRDM16 has also been related to the increase of visceral fat which may cause the immune response in animals. In the process of “browning”, many transcriptional factors were recruited to the promoter or enhancer regions of brown fat-related genes by regulation of PRDM16 through its ZF-1/2 domain. This, in turn, eventually promotes genes expression and BAT differentiation. And the recruit of C-terminal banding protein in the promoter of white fat cell-related genes makes them repressed by PRDM16 via its PLDLS motif in the repression domain. Recently, the genetic variations in the PRDM16 gene were identified, in humans and livestock and have been associated with a spectrum of diseases and production traits. Those reported SNPs in PRDM16 were summarized. The SNPs in human PRDM16 were significantly associated with risk of diseases such as dilated cardiomyopathy, dyslipidemia, migraine without aura and metabolic syndrome. In livestock, variations of PRDM16 have been mainly associated with growth traits and other important economic traits, including body weight, body size and carcass weight. Because of the potential applications of PRDM16 in treating human diseases and improving economic traits in livestock, the future research areas may focus on understanding the mechanism underlying the action of PRDM16 in adipose biology which may have relevance to other PRDM family members. This new knowledge may also have the potential to be exploited for therapeutic and breeding benefits.

Key words: PRDM16    Protein structure    Biological function    Regulation mechanism    Polymorphism
收稿日期: 2018-07-20 出版日期: 2019-05-08
ZTFLH:  Q78  
基金资助: * 中国科学院百人计划资助项目(Y629721002)
通讯作者: 杨果,段子渊     E-mail: yangguo@lzb.ac.cn;zyduan@genetics.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
姬凯茜
焦丹
谢忠奎
杨果
段子渊

引用本文:

姬凯茜,焦丹,谢忠奎,杨果,段子渊. 棕色脂肪细胞特异基因PRDM16的研究进展与展望 *[J]. 中国生物工程杂志, 2019, 39(4): 84-93.

Kai-xi JI,Dan JIAO,Zhong-kui XIE,Guo YANG,Zi-yuan DUAN. Advances and Prospects of Brown Adipocyte-Specific Gene PRDM16. China Biotechnology, 2019, 39(4): 84-93.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190411        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I4/84

图1  人类PRDM16的蛋白质结构[13]
图2  两种类型的人类PRDM16蛋白[2,25]
图3  UCP1的多步骤调控模型 [16]
SNPs 相关的疾病或性状
CM000663.2: g.3414616T>C
CM000663.2: g.3412301A>T
CM000663.2: g.3412644A>G
CM000663.2: g.3402986C>T
CM000663.2: g.3411770_3411771insC
CM000663.2:g.3402940delG
扩张型心肌病
左室心肌致密化不全[41]
CM000663.2: g.3178267C>G 代谢综合征[42]
CM000663.2: g.3167148T>A
CM000663.2: g.3167148T>C
无先兆偏头痛[43,44,45]、血脂异常(高密度脂蛋白胆固醇降低)[46]
CM000663.2: g.3426240G>A
CM000663.2: g.3426240G>T
高密度脂蛋白胆固醇升高[46]
CM000663.2: g.3041036T>C 体重降低
CM000663.2: g.3385157C>T 血脂异常(高三酰甘油血症,低高密度脂蛋白胆固醇血症)[47]
CM000677.2: g.61396368T>C 肥胖

XM_001788152: m.1641T>C(547aa)
XM_001788152: m.1881G>A(627aa)
南阳牛体重和日增重增加[48]
NC_007314.3: g.577G>T 南阳牛、郏县红牛和秦川牛体重、日增重、体斜长、胸围增加[49,50]
NC_007314.3: g.614T>C 郏县红牛体长、体高、腰角宽增加[49,50]
NC_007314.3: g.212237T>C 秦川牛的胸围、体重、腰角宽、十字部增加[49,50]
XM_417551: c.1161C>T(Ala/Ala, 387aa) 心重、肝重、四日小腿长增加[51]
XM_417551: c.1433G>A(Ser/Asn,478aa) 体重、体长增加[52]
表1  人和几种常见动物PRDM16基因的SNPs位点与人类疾病或动物性状的相关性
[1] Mochizuki N, Shimizu S, Nagasawa T , et al. A novel gene, MEL1, mapped to 1p36.3 is highly homologous to the MDS1/EVI1 gene and is transcriptionally activated in t(1;3)(p36;q21)-positive leukemia cells. Blood, 2000,96(9):3209-3214.
doi: 10.1007/s002770000210 pmid: 11050005
[2] Nishikata I, Sasaki H, Iga M , et al. A novel EVI1 gene family, MEL1, lacking a PR domain (MEL1S) is expressed mainly in t(1;3)(p36;q21)-positive AML and blocks G-CSF-induced myeloid differentiation. Blood, 2003,102(9):3323-3332.
doi: 10.1182/blood-2002-12-3944 pmid: 12816872
[3] Seale P, Kajimura S, Yang W , et al. Transcriptional control of brown fat determination by PRDM16. Cell Metabolism, 2007,6(1):38-54.
doi: 10.1016/j.cmet.2007.06.001 pmid: 17618855
[4] Harms M J, Ishibashi J, Wang W , et al. Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell Metabolism, 2014,19(4):593-604.
doi: 10.1016/j.cmet.2014.03.007 pmid: 4012340
[5] Masetti R, Togni M, Astolfi A , et al. Whole transcriptome sequencing of a paediatric case of de novo acute myeloid leukaemia with del(5q) reveals RUNX1‐USP42 and PRDM16-SKI fusion transcripts. British Journal of Haematology, 2014,166(3):449-452.
doi: 10.1111/bjh.12855
[6] Jo A, Mitani S, Shiba N , et al. High expression of EVI1 and MEL1 is a compelling poor prognostic marker of pediatric AML. Leukemia, 2015,29(5):1076-1083.
doi: 10.1038/leu.2015.5 pmid: 25567132
[7] 李琳, 赵春亭, 崔渤莉 , 等. HOXB4、PRDM16及HOXA9在急性髓系白血病中的表达及临床意义. 中国实验血液学杂志, 2016,24(2):326-331.
doi: 10.7534/j.issn.1009-2137.2016.02.004
Li L, Zhao C T, Cui B L , et al. Expression of HOXB4, PRDM16 and HOXA9 in patients with acute myeloid leukemia and its clinical significance. Journal of Experimental Hematology, 2016,24(2):326-331.
doi: 10.7534/j.issn.1009-2137.2016.02.004
[8] Zhou B, Wang J, Lee S Y , et al. PRDM16 suppresses MLL1r leukemia via intrinsic histone methyltransferase activity. Molecular Cell, 2016,62(2):222-236.
doi: 10.1016/j.molcel.2016.03.010 pmid: 27151440
[9] Zhu S, Xu Y, Song M , et al. PRDM16 is associated with evasion of apoptosis by prostatic cancer cells according to RNA interference screening. Molecular Medicine Reports, 2016,14(4):3357-3361.
doi: 10.3892/mmr.2016.5605 pmid: 27511603
[10] Lei Q, Liu X, Fu H , et al. miR-101 reverses hypomethylation of the PRDM16 promoter to disrupt mitochondrial function in astrocytoma cells. Oncotarget, 2016,7(4):5007-5022.
doi: 10.18632/oncotarget.6652 pmid: 4826261
[11] Zaveri H P, Beck T F, Shelly K E , et al. Identification of critical regions and candidate genes for cardiovascular malformations and cardiomyopathy associated with deletions of chromosome 1p36. PLoS One, 2014,9(1): e85600:1-10.
doi: 10.1371/journal.pone.0085600 pmid: 24454898
[12] Choi J, Kim K J, Koh E J , et al. Gelidium elegans Regulates the AMPK-PRDM16-UCP-1 pathway and has a synergistic effect with Orlistat on obesity-associated features in mice Fed a high-fat diet. Nutrients, 2017,9(4):342-359.
doi: 10.3390/nu9040342 pmid: 5409681
[13] Ishibashi J, Seale P . Functions of Prdm16 in thermogenic fat cells. Temperature, 2015,2(1):65-72.
doi: 10.4161/23328940.2014.974444
[14] Seale P, Bjork B, Yang W , et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature, 2008,454(7207):961-967.
doi: 10.1038/nature07182
[15] Kajimura S, Seale P, Kubota K , et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature, 2009,460(7259):1154-1158.
doi: 10.1038/nature08262 pmid: 2754867
[16] Iida S, Chen W, Nakadai T , et al. PRDM16 enhances nuclear receptor-dependent transcription of the brown fat-specific Ucp1 gene through interactions with mediator subunit MED1. Genes & Development, 2015,29(3):308-321.
doi: 10.1101/gad.252809.114 pmid: 25644605
[17] Uldry M, Yang W, St-Pierre J , et al. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metabolism, 2006,3(5):333-341.
doi: 10.1016/j.cmet.2006.04.002 pmid: 16679291
[18] Harms M J, Lim H W, Ho Y , et al. PRDM16 binds MED1 and controls chromatin architecture to determine a brown fat transcriptional program. Genes & Development, 2015,29(3):298-307.
doi: 10.1101/gad.252734.114 pmid: 25644604
[19] Ohno H, Shinoda K, Ohyama K , et al. EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature, 2013,504(7478):163-167.
doi: 10.1038/nature12652
[20] Kajimura S, Seale P, Tomaru T , et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes & Development, 2008,22(10):1397-1409.
doi: 10.1101/gad.1666108 pmid: 18483224
[21] Pinheiro I, Margueron R, Shukeir N , et al. Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell, 2012,150(5):948-960.
doi: 10.1016/j.cell.2012.06.048
[22] Yang Q, Liang X, Sun X , et al. AMPK/α-ketoglutarate axis dynamically mediates DNA demethylation in the Prdm16 promoter and brown adipogenesis. Cell Metabolism, 2016,24(4):542-554.
doi: 10.1016/j.cmet.2016.08.010 pmid: 27641099
[23] Schneider R, Bannister A J, Kouzarides T . Unsafe SETs: histone lysine methyltransferases and cancer. Trends in Biochemical Sciences, 2002,27(8):396-402.
doi: 10.1016/S0968-0004(02)02141-2 pmid: 12151224
[24] Huang S . The retinoblastoma protein-interacting zinc finger gene RIZ in 1p36-linked cancers. Frontiers in Bioscience A Journal & Virtual Library, 1999,4(1-3):D528-532.
doi: 10.2741/Huang pmid: 10369808
[25] Lahortiga I, Agirre X, Belloni E , et al. Molecular characterization of a t(1;3)(p36;q21) in a patient with MDS. MEL1 is widely expressed in normal tissues, including bone marrow, and it is not overexpressed in the t(1;3) cells. Oncogene, 2004,23(1):311-316.
doi: 10.1038/sj.onc.1206923 pmid: 14712237
[26] Schaeper U, Boyd J M, Verma S , et al. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci Usa, 1995,92(23):10467-10471.
doi: 10.1073/pnas.92.23.10467 pmid: 7479821
[27] Gesta S, Tseng Y H, Kahn C R . Developmental origin of fat: tracking obesity to its source. Cell, 2007,131(2):242-256.
doi: 10.1016/j.cell.2007.10.004 pmid: 17956727
[28] Seale P, Conroe H M, Estall J , et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. The Journal of Clinical Investigation, 2011,121(1):96-105.
doi: 10.1172/JCI44271 pmid: 3007155
[29] Fruhbeck G, Sesma P, Burrell M A . PRDM16: the interconvertible adipo-myocyte switch. Trends Cell Biology, 2009,19(4):141-146.
doi: 10.1016/j.tcb.2009.01.007
[30] Cousin B, Cinti S, Morroni M , et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. Journal of Cell Science, 1992,103(4):931-942.
[31] Ohno H, Shinoda K, Spiegelman B M , et al. PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metabolism, 2012,15(3):395-404.
doi: 10.1016/j.cmet.2012.01.019
[32] Huang L, Pan D, Chen Q , et al. Transcription factor Hlx controls a systematic switch from white to brown fat through Prdm16-mediated co-activation. Nature Communications, 2017,8(1):1-16.
doi: 10.1038/s41467-016-0009-6 pmid: 5431875
[33] Chi J, Wu Z, Choi C , et al. Three-dimensional adipose tissue imaging reveals regional variation in beige fat biogenesis and PRDM16-dependent sympathetic neurite density. Cell Metabolism, 2018,27(1):226-240.
doi: 10.1016/j.cmet.2017.12.011 pmid: 29320703
[34] Lodhi I J, Dean J M, He A , et al. PexRAP inhibits PRDM16-mediated thermogenic gene expression. Cell Reports, 2017,20(12):2766-2774.
doi: 10.1016/j.celrep.2017.08.077 pmid: 28930673
[35] Cohen P, Levy J D, Zhang Y , et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell, 2014,156(1-2):304-316.
doi: 10.1016/j.cell.2013.12.021 pmid: 24439384
[36] Ding H, Zheng S, Garcia-Ruiz D , et al. Fasting induces a subcutaneous-to-visceral fat switch mediated by microRNA-149-3p and suppression of PRDM16. Nature Communications, 2015,7(11533):1-17.
doi: 10.1038/ncomms11533 pmid: 27240637
[37] Wu Z, Xie Y, Bucher N L , et al. Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes & Development, 1995,9(19):2350-2363.
doi: 10.1101/gad.9.19.2350 pmid: 7557387
[38] Farmer S R . Transcriptional control of adipocyte formation. Cell Metabolism, 2006,4(4):263-274.
doi: 10.1016/j.cmet.2006.07.001 pmid: 17011499
[39] Nardini M . CtBP/BARS: a dual-function protein involved in transcription co-repression, and Golgi membrane fission. Embo Journal, 2003,22(12):3122-3130.
doi: 10.1093/emboj/cdg283
[40] Chinnadurai G . Transcriptional regulation by C-terminal binding proteins. International Journal of Biochemistry & Cell Biology, 2007,39(9):1593-1607.
doi: 10.1016/j.biocel.2007.01.025 pmid: 17336131
[41] Arndt A K, Schafer S, Drenckhahn J D , et al. Fine mapping of the 1p36 deletion syndrome identifies mutation of PRDM16 as a cause of cardiomyopathy. American Journal of Human Genetics, 2013,93(1):67-77.
doi: 10.1016/j.ajhg.2013.05.015 pmid: 23768516
[42] Park Y M, Province M A, Gao X , et al. Longitudinal trends in the association of metabolic syndrome with 550 k single-nucleotide polymorphisms in the Framingham Heart Study. Bmc Proc, 2009, 3(S7): S116:1-7.
doi: 10.1186/1753-6561-3-S7-S116 pmid: 2795888
[43] Chasman D I, Schürks M, Anttila V , et al. Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nature Genetics, 2011,43(7):695-698.
doi: 10.1038/ng.856 pmid: 21666692
[44] Xiaoping Fan M D, Jing W M, Wen F M , et al. Replication of migraine GWAS susceptibility loci in Chinese Han Population. Headache the Journal of Head & Face Pain, 2014,54(4):709-715.
doi: 10.1111/head.12329 pmid: 24666033
[45] Wang P . The Research on the correlation between gene polymorphism such as PRDM16,TRPM8,TSPAN2,MMP16etc and migraine without aura. Sichuan Medical Journal, 2016,37(2):131-134
46 郭雅欣, 裴晓婷, 王黎 , 等. PRDM16基因4个SNPs位点与血脂异常的关系及其交互作用研究. 中华内分泌代谢杂志, 2017,33(8):651-655.
doi: 10.3760/cma.j.issn.1000-6699.2017.08.005
Guo Y X, Pei X T, Wang L , et al. Relationship between four SNPs of PRDM16 gene and dyslipidemia and their interaction. Chinese Journal of Endocrinology and Metabolism, 2017,33(8):651-655.
doi: 10.3760/cma.j.issn.1000-6699.2017.08.005
[47] 张菊红, 李南方, 张德莲 , 等. PRDM16基因单核苷酸多态性与肥胖人群血脂异常的相关性. 临床心血管病杂志, 2013,29(9):657-661.
Zhang J H, Li N F, Zhang D L , et al. Polymorphism of PRDM16 gene:effect on dyslipidemia in obese patients. Journal of Clinical Cardiology, 2013,29(9):657-661.
[48] Wang J, Li Z J, Lan X Y , et al. Two novel SNPs in the coding region of the bovine PRDM16 gene and its associations with growth traits. Molecular Biology Reports, 2010,37(1):571-577.
doi: 10.1007/s11033-009-9816-8 pmid: 19760096
[49] 王璟 . 黄牛转录因子PRDM16基因的SNP检测及其与生长性状的关联分析. 咸阳: 西北农林科技大学, 2010.
Wang J . The analysis of trancription factor PRDM16 SNP of Bovine and three association with growth traits. Xianyang: Northwest A & F University, 2010.
[50] Wang J, Wang C, Tian R , et al. Sequence variants in the bovine PRDM16 gene associated with body weight in Chinese cattle breeds. Genetics & Molecular Research Gmr, 2012,11(1):746-755.
doi: 10.4238/2012.March.22.5 pmid: 22576833
[51] Wu J, Bostrom P, Sparks L M , et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 2012,150(2):366-376.
doi: 10.1016/j.cell.2012.05.016 pmid: 22796012
[52] Han R L, Wei Y, Kang X , et al. Novel SNPs in the PRDM16 gene and their associations with performance traits in chickens. Molecular Biology Reports, 2012,39(3):3153-3160.
doi: 10.1007/s11033-011-1081-y
[53] Wang J, Li Z J, Lan X Y , et al. Two novel SNPs in the coding region of the bovine PRDM16 gene and its associations with growth traits. Molecular Biology Reports, 2010,37(1):571-577.
doi: 10.1007/s11033-009-9816-8 pmid: 19760096
[54] Hohenauer T, Moore A W . The Prdm family: expanding roles in stem cells and development. Development, 2012,139(13):2267-2282.
doi: 10.1242/dev.070110 pmid: 22669819
[55] Hasegawa Y, Ikeda K, Chen Y , et al. Repression of adipose tissue fibrosis through a PRDM16-GTF2IRD1 complex improves systemic glucose homeostasis. Cell Metabolism, 2018,27(1):180-194.
doi: 10.1016/j.cmet.2017.12.005 pmid: 29320702
[1] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[2] 王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.
[3] 宇光海, 彭海芬, 王翱宇. 阿维拉霉素生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 94-102.
[4] 徐嘉威,贺花,张静,雷初朝,陈宏,黄永震. 转录因子KLF8基因结构及其功能研究进展[J]. 中国生物工程杂志, 2018, 38(4): 90-95.
[5] 梁士博, 刘佳莹, 刘杰, 杨江涛, 李集临, 张延明. NGS技术在作物基因组研究中的应用[J]. 中国生物工程杂志, 2017, 37(2): 111-120.
[6] 李达, 代鹏, 王伟, 张文涛, 汪钦, 束毅, 祝春来, 纪奇峰, 梁平, 颜真. PLCE1基因及rs2274223和rs3765524单体型的克隆与表达[J]. 中国生物工程杂志, 2016, 36(12): 1-7.
[7] 刘文波, 陈禹保, 邢玉华. 细胞色素P450基因多态性与药物代谢研究进展[J]. 中国生物工程杂志, 2016, 36(12): 104-110.
[8] 吴庆, 刘慧燕, 方海田, 何建国, 贺晓光, 于丽男, 王梦娇. 解淀粉芽孢杆菌高效合成胞苷的代谢调控机制及育种策略[J]. 中国生物工程杂志, 2015, 35(9): 122-127.
[9] 尹守亮, 张玉秀, 张琪, 豆梦楠, 杨克迁. 无机磷酸盐对链霉菌合成次级代谢产物的影响[J]. 中国生物工程杂志, 2015, 35(9): 105-113.
[10] 李冉, 王恬, 朱鸿亮. 长链非编码RNA的生物学功能和研究方法[J]. 中国生物工程杂志, 2015, 35(9): 66-70.
[11] 王永成, 陈涛, 石婷, 王智文, 赵学明. 嘌呤核苷及其衍生物的代谢工程[J]. 中国生物工程杂志, 2015, 35(5): 87-95.
[12] 冯天祥, 王玲, 陈海敏, 盛清, 左锐, 谢文杰. 植物内生放线菌功能及生物活性物质研究进展[J]. 中国生物工程杂志, 2015, 35(4): 98-106.
[13] 姚雪, 刘琪琦, 赵青, 陈苏红. 应用可视化基因芯片技术检测幽门螺杆菌感染个体化药物治疗相关基因[J]. 中国生物工程杂志, 2013, 33(4): 92-100.
[14] 余志良, 周宁, 乔华. L-氨基酸氧化酶的研究进展[J]. 中国生物工程杂志, 2012, 32(03): 125-135.
[15] 金慧, 栾雨时. 转录因子在植物抗病基因工程中的研究进展[J]. 中国生物工程杂志, 2010, 30(10): 94-99.