Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (4): 69-77    DOI: 10.13523/j.cb.20190409
技术与方法     
大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *
赵程程,孙长坡,常晓娇,伍松陵,林振泉()
国家粮食和物资储备局科学研究院 粮油加工研究所 北京 100037
Construction and Application of Cell Lysis Systems in the Expression of Mycotoxin Degrading Enzyme in Escherichia coli
Cheng-cheng ZHAO,Chang-po SUN,Xiao-jiao CHANG,Song-ling WU,Zhen-quan LIN()
Academy of National Food and Strategic Reserves Administration, Institute of Cereal Processing Science and Technology, Beijing 100037,China
 全文: PDF(1412 KB)   HTML
摘要:

目的:大肠杆菌中分泌表达重组蛋白受限于其分泌效率,为此设计构建大肠杆菌诱导裂解系统以实现胞内重组蛋白的快速高效分泌。方法:利用大肠菌素E7对细胞的裂解能力,构建共表达目标重组蛋白和E7的大肠杆菌细胞裂解系统,使目标重组蛋白在E7表达后得以释放到培养基中。结果:首先以红色荧光蛋白(red fluorescent protein, RFP)为报告基因,在pET28a(+)载体上构建大肠杆菌素E7和红色荧光蛋白两个表达盒,通过对比分析IPTG一步诱导和IPTG-阿拉伯糖分步诱导系统蛋白质的表达效果,发现分步诱导系统能够更高效地表达并释放目标蛋白到培养基。在IPTG-阿拉伯糖分步诱导裂解系统中表达玉米赤霉烯酮降解酶基因,培养基上清液中检测到玉米赤霉烯酮降解酶有较好的表达量和较高的活性,能够在37℃反应30min的条件下降解约5.8μg玉米赤霉烯酮毒素。结论:利用大肠菌素E7成功构建大肠杆菌细胞裂解系统,并且此系统在快速释放胞内表达外源蛋白方面有适用性。

关键词: 大肠杆菌细胞裂解系统红色荧光蛋白玉米赤霉烯酮降解酶    
Abstract:

Objective: Extracellular production of recombinant proteins in Escherichia coli is limited by the inefficiency of inherent secretion system. An inducible cell lysis system was designed and constructed to enhance secretion of intracellular recombinant protein in E.coli.Methods: Considering colicin E7 could promote cell lysis, E.coli cell lysis systems were constructed by co-expressing target protein and colicin E7 lysis to release the recombinant proteins to culture medium.Results: A reporter protein (red fluorescent protein, RFP), as a recombinant protein, was co-expressed with E7 in E.coli to evaluate the cell lysis systems. Expression of recombinant protein was controlled by T7 promoter. While E7 cassette was controlled by two promoters (T7 promoter and araBAD promoter) which determined the expression timing of E7 and therefore determined the timing of cell lysis. Compared to one-step induction by IPTG, the two-step induction by IPTG and L-arabinose was better for the production and secretion of recombinant proteins. The two-step inducible lysis system was also used to express zearalenone (ZEN) degrading enzyme, and high enzyme activity was detectable in the culture supernatant samples. The secreted enzyme could degrade about 5.8μg ZEN in 30minutes at 37℃.Conclusion: The colicin E7 assisted two-step inducible cell lysis system could be potential for expression of recombinant proteins and their secretion to extracellular in E. coli.

Key words: E. coli    Cell lysis system    Red fluorescent protein    Zearalenone degrading enzyme
收稿日期: 2018-08-21 出版日期: 2019-05-08
ZTFLH:  Q819  
基金资助: * 公益性行业(粮食)科研专项(201513006);国家自然科学基金资助项目(U1604234)
通讯作者: 林振泉     E-mail: zhenquanlin09@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵程程
孙长坡
常晓娇
伍松陵
林振泉

引用本文:

赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.

Cheng-cheng ZHAO,Chang-po SUN,Xiao-jiao CHANG,Song-ling WU,Zhen-quan LIN. Construction and Application of Cell Lysis Systems in the Expression of Mycotoxin Degrading Enzyme in Escherichia coli. China Biotechnology, 2019, 39(4): 69-77.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190409        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I4/69

Strains and plasmids Characteristics Source
E.coli DH5α F-; φ80lacZΔM15; Δ(lacZYA-argF)U169; deoR; recA1; endA1; hsdR17(rk-, mk+); phoA; supE44; λ-; thi-1; gyrA96; relA1 Lab collection
E.coli BL21(DE3) F-; ompT; hsdSB(rB-, mB-); gal; dcm(DE3) Lab collection
pKD46 Ampr, λ-red recombinase under araBAD promoter, temperature-conditional replicon Lab collection
pET28a(+) Kanr, T7lac promoter, His-Tag (N, C) and T7-Tag (I) Lab collection
pET28a(+)-E7 pET28a(+) containing E7 gene This study
pET28a(+)-AraE7 colicin E7 under the control of araBAD promoter in pET28a(+)-E7 This study
pET28a(+)-T7E7 pET28a(+) containing a cassette of colicin E7 controlled by T7 promoter This study
pET28a(+)-T7E7-T7rfp pET28a(+)-T7E7 containing a cassette of rfp controlled by T7 promoter This study
pET28a(+)-AraE7 pET28a(+) containing a cassette of colicin E7 controlled by araBAD promoter This study
pET28a(+)-AraE7-T7rfp pET28a(+)-AraE7 containing a cassette of rfp controlled by T7 promoter This study
pET28a(+)-AraE7-T7ZENd pET28a(+)-AraE7 containing a cassette of ZENd controlled by T7 promoter This study
表1  本研究中所用菌株和质粒
Primers Sequences(5'→3') Restriction sites Target genes
E7-F 5'-CATGCCATGGATGAAAAAAATAACAGG-3' Nco I Colicin E7
E7-R 5'-CCGCTCGAGTTACTGCGTTTCCACTCC-3' Xho I Colicin E7
PBAD-F 5'- CACTGATCCGCATGCTTATGAC -3' Sph I ParaBAD
PBAD-R 5'-TCTAGATCTAGATTCCCAAAAAAACGGGTATGGA-3' Xba I ParaBAD
rfp-F 5'-CCGGAATTCATGGCTTCCTCCGAAGACGTTATC-3' EcoR I rfp
rfp-R 5'-ACGCGTCGACTTAAGCACCGGTGGAGTGACGACC-3' Sal I rfp
ZENd-F 5'-CCGGAATTCATGCGTATCCGTAGCACCATTAG-3' EcoR I ZENd
ZENd-R 5'-ACGCGTCGACTTACAGATATTTCTGGGTAAATTC-3' Sal I ZENd
表2  本研究中使用的引物
图1  大肠杆菌诱导裂解系统中细胞裂解示意图
图2  大肠杆菌细胞裂解系统的质粒构建过程
图3  大肠杆菌诱导裂解菌株生长曲线
图4  大肠杆菌裂解系统中红色荧光蛋白表达菌株培养基上清液的SDS-PAGE
图5  红色荧光蛋白荧光强度随诱导时间的变化
图6  大肠杆菌RFP表达菌株显微镜下的菌体形态观察
图7  大肠杆菌裂解系统中玉米赤霉烯酮降解酶表达菌株培养基上清液浓缩10倍后的SDS-PAGE
图8  玉米赤霉烯酮降解酶表达菌株诱导过程培养基上清液对ZEN的降解
[1] Baneyx F, Mujacic M . Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology, 2004,22(11):1399-1408.
doi: 10.1038/nbt1029
[2] Bell P A . E.coli expression systems//Gerstein A S. Molecular biology problem solver: A laboratory guide. New York: John Wiley and Sons Ltd, 2002: 461-490.
[3] Mergulhão F J M, Summers D K, Monteiro G A . Recombinant protein secretion in Escherichia coli. Biotechnology Advances, 2005,23(3):177-202.
doi: 10.1016/j.biotechadv.2004.11.003 pmid: 15763404
[4] Gentschev I, Dietrich G, Goebel W . The E.coli α-hemolysin secretion system and its use in vaccine development. TRENDS in Microbiology, 2002,10(1):39-45.
doi: 10.1016/S0966-842X(01)02259-4 pmid: 11755084
[5] Fernández L A, Lorenzo V D . Formation of disulphide bonds during secretion of proteins through the periplasmic-independent type I pathway. Molecular Microbiology, 2001,40(2):332-346.
doi: 10.1046/j.1365-2958.2001.02410.x pmid: 11309117
[6] Koster M, Bitter W, Tommassen J . Protein secretion mechanisms in Gram-negative bacteria. International Journal of Medical Microbiology, 2000,290(4):325-331.
doi: 10.1016/S1438-4221(00)80033-8 pmid: 11111906
[7] Humphreys D P, Sehdev M, Chapman A P , et al. High-level periplasmic expression in Escherichia coli using a eukaryotic signal peptide: importance of codon usage at the 5'end of the coding sequence. Protein Expression and Purification, 2000,20(2):252-264.
doi: 10.1006/prep.2000.1286 pmid: 11049749
[8] Zamani M, Nezafat N, Negahdaripour M , et al. In silico evaluation of different signal peptides for the secretory production of human growth hormone in E.coli. International Journal of Peptide Research and Therapeutics, 2015,21(3):261-268.
doi: 10.1007/s10989-015-9454-z
[9] Jeong K J, Lee S Y . Excretion of human β-endorphin into culture medium by using outer membrane protein F as a fusion partner in recombinant Escherichia coli. Applied and Environmental Microbiology, 2002,68(10):4979-4985.
doi: 10.1128/AEM.68.10.4979-4985.2002 pmid: 126437
[10] Gray G L, Baldridge J S , McKeown K S , et al. Periplasmic production of correctly processed human growth hormone in Escherichia coli: natural and bacterial signal sequences are interchangeable. Gene, 1985,39(2-3):247-254.
doi: 10.1016/0378-1119(85)90319-1 pmid: 3912261
[11] Robbens J, Raeymaekers A, Steidler L , et al. Production of soluble and active recombinant murine interleukin-2 in Escherichia coli: high level expression, Kil-induced release, and purification. Protein Expression and Purification, 1995,6(4):481-486.
doi: 10.1006/prep.1995.1064 pmid: 8527934
[12] Sommer B, Friehs K, Flaschel E . Efficient production of extracellular proteins with Escherichia coli by means of optimized coexpression of bacteriocin release proteins. Journal of Biotechnology, 2010,145(4):350-358.
doi: 10.1016/j.jbiotec.2009.11.019 pmid: 19958803
[13] Hsiung H M, Cantrell A, Luirink J , et al. Use of bacteriocin release protein in E.coli for excretion of human growth hormone into the culture medium. Nature Biotechnology, 1989,7(3):267-271.
doi: 10.1038/nbt0389-267
[14] Kiany J, Zomorodipour A, Raji M A , et al. Construction of recombinant plasmids for periplasmic expression of human growth hormone in Escherichia coli under T7 and lac promoters. Journal of Sciences, Islamic Republic of Iran, 2003,14(4):311-316.
[15] Yamabhai M, Emrat S, Sukasem S , et al. Secretion of recombinant Bacillus hydrolytic enzymes using Escherichia coli expression systems. Journal of Biotechnology, 2008,133(1):50-57.
doi: 10.1016/j.jbiotec.2007.09.005 pmid: 17950946
[16] Morita M, Asami K, Tanji Y , et al. Programmed Escherichia coli cell lysis by expression of cloned T4 phage lysis genes. Biotechnology Progress, 2001,17(3):573-576.
doi: 10.1021/bp010018t pmid: 11386882
[17] Yang Y G, Tong Q, Hu T S , et al. The application of a novel lytic system to the recovery of recombinant proteins in E .coli. Acta Biochimica et Biophysica Sinica, 2000,32(3):211-216.
doi: 10.1016/S0014-5793(00)01482-4 pmid: 12075442
[18] Lo T M, Tan M H, Hwang I Y , et al. Designing a synthetic genetic circuit that enables cell density-dependent auto-regulatory lysis for macromolecule release. Chemical Engineering Science, 2013,103:29-35.
doi: 10.1016/j.ces.2013.03.021
[19] Chen Y R, Yang T Y, Lei G S , et al. Delineation of the translocation of colicin E7 across the inner membrane of Escherichia coli. Archives of Microbiology, 2011,193(6):419-428.
doi: 10.1007/s00203-011-0688-7 pmid: 21387181
[20] Wang N, Guo X, Ng I S . Simultaneous release of recombinant cellulases introduced by coexpressing colicin E7 lysis in Escherichia coli. Biotechnology and Bioprocess Engineering, 2016,21(4):491-501.
doi: 10.1007/s12257-016-0260-z
[21] Lin L J R, Liao C C, Chen Y R , et al. Induction of membrane permeability in Escherichia coli mediated by lysis protein of the ColE7 operon. FEMS Microbiology Letters, 2009,298(1):85-92.
doi: 10.1111/j.1574-6968.2009.01705.x pmid: 19673051
[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.
[3] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[4] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[5] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[6] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[7] 乐易林,傅毓,倪黎,孙建中. 热稳定性丙酮酸:铁氧还蛋白氧化还原酶异源表达及其在乙酰辅酶A合成中的应用 *[J]. 中国生物工程杂志, 2020, 40(3): 72-78.
[8] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[9] 贺雪婷,张敏华,洪解放,马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 81-87.
[10] 胡立强, 郑文, 钟艺, 杜丹, 杨浩, 龚萌. 抗病毒蛋白RC28在大肠杆菌和毕赤酵母中的表达及活性比较[J]. 中国生物工程杂志, 2017, 37(1): 14-20.
[11] 张宇萌, 童梅, 陆小冬, 米月, 莫婷, 刘金毅, 姚文兵. 大肠杆菌可溶性表达抗TNF-α Fab的工艺优化[J]. 中国生物工程杂志, 2016, 36(9): 31-37.
[12] 刘婷婷, 梁梓强, 梁士可, 郭技星, 王方海. 利用生物工程技术生产蜘蛛丝的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 132-137.
[13] 张宇萌, 童梅, 陆小冬, 米月, 徐晨, 姚文兵. 提高大肠杆菌可溶性重组蛋白表达产率的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 118-124.
[14] 武雪龙, 杨晓慧, 汪俊卿, 王瑞明. 蜜蜂NADPH-细胞色素P450还原酶基因在大肠杆菌中的表达及酶学特性分析[J]. 中国生物工程杂志, 2016, 36(12): 28-35.
[15] 张强, 李大帅, 卢文玉. 大肠杆菌异源合成三萜化合物研究进展和前景分析[J]. 中国生物工程杂志, 2016, 36(11): 83-89.