Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (1): 57-61    DOI: 10.13523/j.cb.20180107
综述     
抗菌肽改良设计及抗炎作用的研究进展
杨静,贾如涵,李文慧,石大林,邵明洋,韩跃武()
兰州大学基础医学院 兰州 730000
The Development of Optimized Design and Anti-inflammatory Mechanisms of Antimicrobial Peptides
Jing YANG,Ru-han JIA,Wen-hui LI,Da-lin SHI,Ming-yang SHAO,Yue-wu HAN()
School of Basic Medical Sciences, Lanzhou University. Lanzhou 730000, China
 全文: PDF(389 KB)   HTML
摘要:

抗菌肽因其具有广谱抗菌活性、不容易引起抵抗性,被认为是先天免疫系统对抗微生物感染的多功能工具。然而,天然抗菌肽存在抗菌活性低、稳定性低、溶血性高等问题,使其较难应用于临床,所以研究人员对抗菌肽进行改良设计以期获得更高抗菌活性、更低溶血活性的新型抗菌肽。另外,天然抗菌肽作为一类免疫效应因子而被发现,其表现出的抑菌、免疫调节、内毒素中和等作用,使得研究人员对抗菌肽在抗炎作用的研究表现出极大的兴趣。就抗菌肽的药物设计方法及抗炎作用机制进行综述。

关键词: 抗菌肽优化设计抗炎    
Abstract:

Because antimicrobial peptides have a broad spectrum of antimicrobial activity and are not easy to cause resistance, it are understood abroad multifunctional tools of the innate immune system to fight microbial infections.However, the antimicrobial activity and stability of natural antimicrobial peptides is lower, and hemolytic activity of antimicrobial peptides is higher, resulting in more difficultly applying to clinical trials. So researchers optimize to design it to achieve the newly antimicrobial peptides of higher antimicrobial activity and lower hemolytic activity. In addition, natural antimicrobial peptides are discovered as a class of immune effectors, resulting from antimicrobial activity , immunomodulatory activity and the ability of neutralizing endotoxin of antimicrobial peptides and so on. So researchers are more interested in its anti-inflammatory development. Optimized design and anti-inflammatory mechanism of antimicrobial peptides are reviewed.

Key words: School of Basic Medical Sciences    Lanzhou University. Lanzhou 730000    China
收稿日期: 2017-08-28 出版日期: 2018-01-31
ZTFLH:  Q819  
基金资助: 国家自然科学基金(21272107);甘肃省科技支撑计划项目资助项目(1304FKCA088)
作者简介: 通讯作者 韩跃武, 电子信箱: hanyuewu730000@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨静
贾如涵
李文慧
石大林
邵明洋
韩跃武

引用本文:

杨静,贾如涵,李文慧,石大林,邵明洋,韩跃武. 抗菌肽改良设计及抗炎作用的研究进展[J]. 中国生物工程杂志, 2018, 38(1): 57-61.

Jing YANG,Ru-han JIA,Wen-hui LI,Da-lin SHI,Ming-yang SHAO,Yue-wu HAN. The Development of Optimized Design and Anti-inflammatory Mechanisms of Antimicrobial Peptides. China Biotechnology, 2018, 38(1): 57-61.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180107        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I1/57

[1] De L F C, Silva O N, Lu T K, et al. Antimicrobial peptides: role in human disease and potential as immunotherapies. Pharmacology & Therapeutics, 2017, 178: 132-140.
doi: 10.1016/j.pharmthera.2017.04.002 pmid: 28435091
[2] Silva O N, de la Fuente-Nunez C, Haney E F, et al. An anti-infective synthetic peptide with dual antimicrobial and immunomodulatory activities. Sci Rep, 2016, 6(11): 35465.
doi: 10.1038/srep35465 pmid: 27804992
[3] Wang G, Li X, Wang Z.APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Research, 2016, 44(D1): D1087-D1093.
doi: 10.1093/nar/gkv1278 pmid: 4702905
[4] Fjell C D, Hiss J A, Hancock R E, et al.Designing antimicrobial peptides: form follows function. Nature Reviews Drug Discovery, 2011, 11(1): 37.
doi: 10.1038/nrd3591 pmid: 22173434
[5] Deslouches B, Steckbeck J D, Craigo J K, et al.Rational design of engineered cationic antimicrobial peptides consisting exclusively of arginine and tryptophan, and their activity against multidrug-resistant pathogens. Antimicrobial Agents & Chemotherapy, 2013, 57(6): 2511.
doi: 10.1128/AAC.02218-12 pmid: 23507278
[6] Dong W, Mao X, Yue G, et al.Antimicrobial and anti-inflammatory activities of three chensinin-1 peptides containing mutation of glycine and histidine residues. Scientific Reports, 2017, 7(5): 40228.
doi: 10.1038/srep40228 pmid: 28054660
[7] Sun Y, Dong W, Sun L, et al.Insights into the membrane interaction mechanism and antibacterial properties of chensinin-1b. Biomaterials, 2015, 37(37c): 299-311.
doi: 10.1016/j.biomaterials.2014.10.041 pmid: 25453959
[8] Bi X, Wang C, Dong W, et al.Antimicrobial properties and interaction of two Trp-substituted cationic antimicrobial peptides with a lipid bilayer. Journal of Antibiotics, 2014, 67(5): 361-368.
doi: 10.1038/ja.2014.4 pmid: 24496141
[9] Cao Y, Yu R Q, Liu Y, et al.Design, recombinant expression, and antibacterial activity of the cecropins-melittin hybrid antimicrobial peptides. Current Microbiology, 2010, 61(3): 169-175.
doi: 10.1007/s00284-010-9592-7 pmid: 20111863
[10] Kateb B, Chiu K, Black K L, et al. Nanoplatforms for constructing new approaches to cancer treatment, imaging, drug delivery: What should be the policy. Neuroimage, 2011, 54 Suppl 1(1): S106.
doi: 10.1016/j.neuroimage.2010.01.105 pmid: 20149882
[11] Setyawati M I, Kutty R V, Tay C Y, et al.Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus. Acs Applied Materials & Interfaces, 2014, 6(24): 21822-21831.
[12] Anayalópez J L, Lópezmeza J E, Ochoazarzosa A.Bacterial resistance to cationic antimicrobial peptides. Critical Reviews in Microbiology, 2013, 39(2): 180.
doi: 10.3109/1040841X.2012.699025 pmid: 22799636
[13] Lee J K, Park Y J, Kum K Y, et al.Antimicrobial efficacy of a human β-defensin-3 peptide using an Enterococcus faecalis dentine infection model. International Endodontic Journal, 2013, 46(5): 406.
doi: 10.1111/iej.12002 pmid: 23078156
[14] Chen L, Patrone N, Liang J F.Peptide self-assembly on cell membranes to induce cell lysis. Biomacromolecules, 2012, 13(10): 3327.
doi: 10.1021/bm301106p pmid: 22934601
[15] Hazlett L, Wu M.Defensins in innate immunity. Cell & Tissue Research, 2011, 343(1): 175-88.
[16] Demirkhanyan L, Marin M, Lu W, et al.Sub-inhibitory concentrations of human α-defensin potentiate neutralizing antibodies against HIV-1 gp41 pre-hairpin intermediates in the presence of serum. PLoS Pathogens, 2013, 9(6): e1003431.
doi: 10.1371/journal.ppat.1003431 pmid: 3681749
[17] Li Y, Xiang Q, Zhang Q, et al.Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides, 2012, 37(2): 207.
doi: 10.1016/j.peptides.2012.07.001 pmid: 22800692
[18] Park S C, Park Y, Hahm K S.The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. International Journal of Molecular Sciences, 2011, 12(9): 5971-5992.
doi: 10.3390/ijms12095971 pmid: 3189763
[19] Gordya N, Yakovlev A, Kruglikova A, et al.Natural antimicrobial peptide complexes in the fighting of antibiotic resistant biofilms: Calliphora vicina medicinal maggots. PLoS One, 2017, 12(3): e0173559.
doi: 10.1371/journal.pone.0173559 pmid: 28278280
[20] Butt A, Khan A.Antibiotics resistance of bacterial biofilms. Middle East Journal of Business, 2015, 10(4): 38-45.
doi: 10.5742/MEJB.2015.92718
[21] Ji S, Kim Y, Min B M, et al.Innate immune responses of gingival epithelial cells to nonperiodontopathic and periodontopathic bacteria. Journal of Periodontal Research, 2010, 42(6): 503-510.
doi: 10.1111/j.1600-0765.2007.00974.x pmid: 17956462
[22] Liu Y, Knapp K M, Yang L, et al.High in vitro antimicrobial activity of β-peptoid-peptide hybrid oligomers against planktonic and biofilm cultures of Staphylococcus epidermidis. International Journal of Antimicrobial Agents, 2013, 41(1): 20.
doi: 10.1016/j.ijantimicag.2012.09.014 pmid: 23153961
[23] Krishna S, Miller L S.Innate and adaptive immune responses against Staphylococcus aureus skin infections. Seminars in Immunopathology, 2012, 34(2): 261.
doi: 10.1007/s00281-011-0292-6
[24] Haney E F, Mansour S C, Hancock R E W. Antimicrobial Peptides: An Introduction.Antimicrobial Peptides. New York:Springer New York, 2017.
[25] Steinstraesser L, Hirsch T, Schulte M, et al.Innate defense regulator peptide 1018 in wound healing and wound infection. PLoS One, 2012, 7(8): e39373.
doi: 10.1371/journal.pone.0039373 pmid: 3412849
[26] Am V D D, Joosten S A, Vroomans E, et al. The antimicrobial peptide hLF1-11 drives monocyte-dendritic cell differentiation toward dendritic cells that promote antifungal responses and enhance Th17 polarization. Journal of Innate Immunity, 2012, 4(3): 284.
doi: 10.1159/000332941 pmid: 22261275
[27] Mansour S C, Pena O M, Hancock R E.Host defense peptides: front-line immunomodulators. Trends in Immunology, 2014, 35(9): 443.
doi: 10.1016/j.it.2014.07.004 pmid: 25113635
[28] Mares J, Kumaran S, Gobbo M, et al.Interactions of lipopolysaccharide and polymyxin studied by NMR, spectroscopy. Journal of Biological Chemistry, 2009, 284(17): 11498.
doi: 10.1074/jbc.M806587200 pmid: 2670155
[29] Yang D, Biragyn A, Hoover D M, et al.Multiple roles of antimicrobial Defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annual Review of Immunology, 2004, 22(1): 181.
doi: 10.1146/annurev.immunol.22.012703.104603 pmid: 15032578
[30] Pulido D, Nogués M V, Boix E, et al.Lipopolysaccharide neutralization by antimicrobial peptides: a gambit in the innate host defense strategy. Journal of Innate Immunity, 2012, 4(4): 327-336.
doi: 10.1159/000336713 pmid: 22441679
[1] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[2] 唐馨,毛新芳,马彬云,苟萍. 抗菌肽的研究现状和挑战 *[J]. 中国生物工程杂志, 2019, 39(8): 86-94.
[3] 杨隆兵,国果,马慧玲,李妍,赵欣宇,苏佩佩,张勇. 家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测 *[J]. 中国生物工程杂志, 2019, 39(4): 24-31.
[4] 唐健雪,肖永乐,彭俊杰,赵世纪,万小平,高荣. 融合抗菌肽基因在重组毕赤酵母的表达及体外活性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 9-16.
[5] 温赛, 刘怀然, 韩煦, 李天, 邢旋. 综述人工合成型抗菌肽及其药学应用研究进展[J]. 中国生物工程杂志, 2016, 36(8): 89-98.
[6] 刘晓明, 姜宁, 张爱忠, 蔡鹏. 杂合抗菌肽在毕赤酵母中的表达及其活性测定[J]. 中国生物工程杂志, 2016, 36(2): 81-89.
[7] 巫春旭, 卢雪梅, 金小宝, 朱家勇. 天蚕素类抗菌肽分子设计研究进展[J]. 中国生物工程杂志, 2016, 36(2): 96-100.
[8] 陈洁梅, 张灿辉, 艾田. 解淀粉芽孢杆菌KN-BL-1及其发酵豆粕产抗菌肽类物质的研究[J]. 中国生物工程杂志, 2014, 34(10): 61-66.
[9] 武如娟, 张日俊. 杂合抗菌肽设计及生物学活性的研究进展[J]. 中国生物工程杂志, 2013, 33(9): 94-100.
[10] 陈宇婷, 王长海, 严秀文, 黎军胜. 抗菌肽的设计及其应用[J]. 中国生物工程杂志, 2013, 33(7): 97-102.
[11] 明飞平, 杨军, 朱进美, 邝哲师, 李华周, 夏枫耿, 叶明强, 王候光, 赵祥杰, 黄志丰, 蔡海明, 施巨清, 马苗鹏, 张玲华. 5’非翻译区序列改建提高抗菌肽PR39表达[J]. 中国生物工程杂志, 2013, 33(12): 86-91.
[12] 陈武, 黎定军, 丁彦, 张旭, 肖启明, 周清明. 病原微生物对抗菌肽抗性机制的研究进展[J]. 中国生物工程杂志, 2012, 32(05): 97-106.
[13] 舒梅, 许杨, 徐熙, 涂追. 两种水生动物抗菌肽的原核表达及活性分析[J]. 中国生物工程杂志, 2011, 31(02): 56-61.
[14] 谢珊珊 余榕捷 曾乐 李娟 王静静 洪岸. 重组血管活性肠肽的制备及鉴定[J]. 中国生物工程杂志, 2009, 29(11): 29-35.
[15] 李朴,文阳安,刘靳波,扬细媚,周金敬,涂植光. 抗菌肽Bactenecin7重组质粒构建及其在乳酸菌的分泌表达和活性鉴定[J]. 中国生物工程杂志, 2009, 29(01): 70-74.