Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (1): 51-56    DOI: 10.13523/j.cb.20180106
综述     
埃博拉病毒疫苗rVSV-ZEBOV的研究进展
张杨玲,汪园,张革()
中山大学药学院 广州 510006
Advances in Research on Ebola Virus Vaccine: rVSV-ZEBOV
Yang-ling ZHANG,Yuan WANG,Ge ZHANG()
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
 全文: PDF(731 KB)   HTML
摘要:

埃博拉病毒被列为A类病原体,感染后可引起埃博拉出血热,具有高传染率和高致死率。研发安全有效的抗病毒疫苗迫在眉睫。目前正在研发的埃博拉病毒疫苗包括病毒载体疫苗、蛋白疫苗、DNA疫苗等,其中最有希望的是重组水疱性口炎病毒载体疫苗rVSV-ZEBOV。该疫苗在预防和治疗埃博拉出血热方面具有较高的安全性和有效性,有望在2018年上市。为了深入了解rVSV-ZEBOV疫苗,现主要从制备方法、药理学研究和作用机制等方面对该疫苗进行介绍。

关键词: 埃博拉病毒rVSV-ZEBOV疫苗制备方法药理学研究作用机制    
Abstract:

Ebola viruses are the causative agents of Ebola hemorrhagic fever with high infection rates and high fatality rates, which were classified as category A pathogens. A safe and effective vaccine against Ebola virus infection is urgently needed. Currently, the Ebola virus vaccine candidates under study include viral vectors vaccines, protein vaccines and DNA vaccines. Among them, the most promising vaccine candidate is the recombinant vesicular stomatitis viral vector-based vaccine: rVSV-ZEBOV. The vaccine is safe and effective in prevention and treatment Ebola hemorrhagic fever. It is expected to be available in 2018. In order to gain an in-depth understanding of rVSV-ZEBOV vaccine, the preparation, pharmacological studies, and mechanism of action of rVSV-ZEBOV vaccine are focused on.

Key words: Ebola virus    rVSV-ZEBOV    Preparation    Pharmacological studies    Mechanism
收稿日期: 2017-07-21 出版日期: 2018-01-31
ZTFLH:  Q81  
作者简介: 通讯作者 张革, 电子信箱: zhangge@mail.sysu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张杨玲
汪园
张革

引用本文:

张杨玲,汪园,张革. 埃博拉病毒疫苗rVSV-ZEBOV的研究进展[J]. 中国生物工程杂志, 2018, 38(1): 51-56.

Yang-ling ZHANG,Yuan WANG,Ge ZHANG. Advances in Research on Ebola Virus Vaccine: rVSV-ZEBOV. China Biotechnology, 2018, 38(1): 51-56.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180106        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I1/51

类型 疫苗举例
可复制病毒载体疫苗 重组水泡性口腔炎病毒载体疫苗,如rVSV-ZEBOV
重组人副流感病毒3型载体疫苗,如HPIV3-EBOVZ GP
重组巨细胞病毒载体疫苗
重组狂犬病病毒载体疫苗
复制缺陷型病毒载体疫苗 重组腺病毒载体疫苗,如ChAd3-EBOVZ、Ad26-ZEBOV、Ad5-EBOV
改良型痘苗病毒安卡拉株载体疫苗,如MVA-BN-Filo、MVA-EbolaZ
委内瑞拉马脑炎病毒复制子疫苗
库京病毒病毒样颗粒疫苗
亚单位疫苗 病毒样颗粒疫苗:Novavax
DNA疫苗 INO-4201、INO-4202、INO-4212、VRC-EBODNA023-00VP、VRCEBODNA012-00-VP、VRCMARDNA025-00-VP、
复制缺陷型病毒疫苗 rEBOVΔVP30
灭活疫苗 脂质体包裹的经γ射线灭活的EBO-Z
表1  埃博拉病毒疫苗分类
时间 试验分期 试验地点 试验对象 接种方式和剂量 参考文献
2005~2014年 临床前 小鼠、豚鼠、几内亚猪、食蟹猴、恒河猴等 单次免疫;口服给药、鼻腔给药、肌肉注射,暴露前给药、暴露后给药;均表现出较高的保护作用 [9,10]
2014年10月 临床I期 美国
WRAIR
健康志愿者,39人 单次免疫;肌肉注射;剂量递增(3×106 PFU,2×107 PFU,1×108 PFU) [11]
NIAID 健康志愿者,39人 28天后加强免疫;肌肉注射;剂量递增(3×106 PFU,2×107 PFU,1×108 PFU) [11]
2014年11月 临床I期 德国 健康志愿者,20人 单次免疫;肌肉注射;剂量递增(3×106 PFU,2×107 PFU) [12]
加蓬 健康志愿者,100人 单次免疫;肌肉注射,剂量递增(3×105 PFU,3×106 PFU,3×105 PFU) [12,13]
肯尼亚 健康志愿者,100人 单次免疫;肌肉注射,剂量递增(3×106 PFU,2×107 PFU) [12]
瑞士 健康志愿者,115人 单次免疫;肌肉注射,剂量递增(1×107 PFU,5×107 PFU,3×105 PFU) [12,13]
2015年3月 临床II期 几内亚 前线医疗工作者,800~
1 200人
试点阶段;单次免疫(2×107 PFU);肌肉注射 [14]
2015年4月 临床III期 几内亚 病毒暴露者,约10 000人 环围接种试验;单次免疫(2×107 PFU);肌肉注射 [14,15]
2015年4月 临床II/III期 塞拉利昂 超过8 650人 阶梯试验;单次免疫(2×107 PFU);肌肉注射 [16]
表2  埃博拉疫苗rVSV-ZEBOV的研究现状
图1  EBOV的基因结构
图2  VSV的基因结构
  Fig.3 rVSV vector
图4  rVSV-ZEBOV疫苗的制备流程[22]
图5  基于VSV载体的进一步减毒疫苗改造[25]
[1] Reynolds P, Marzi A . Ebola and Marburg virus vaccines. Virus Genes, 2017, 53(4): 501-515.
doi: 10.1007/s11262-017-1455-x pmid: 28447193
[2] 许黎黎, 张连峰 . 埃博拉出血热及埃博拉病毒的研究进展. 中国比较医学杂志, 2011, 21(1): 70-74.
doi: 10.3969/j.issn.1671-7856.2011.01.016
Xu L L, Zhang L F . Progress on Ebola hemorrhagic fever and Ebola viruses. Chinese Journal of Comparative Medicine, 2011, 21(1): 70-74.
doi: 10.3969/j.issn.1671-7856.2011.01.016
[3] Wang Y, Li J, Hu Y , et al. Ebola vaccines in clinical trial: The promising candidates. Human Vaccines & Immunotherapeutics, 2017, 13(1): 153-168.
doi: 10.1080/21645515.2016.1225637 pmid: 27764560
[4] Martins K A, Jahrling P B, Bavari S , et al. Ebola virus disease candidate vaccines under evaluation in clinical trials. Expert Review of Vaccines, 2016, 15(9): 1101-1112.
doi: 10.1080/14760584.2016.1187566 pmid: 27160784
[5] Rao M, Bray M, Alving C R , et al. Induction of immune responses in mice and monkeys to Ebola Virus after immunization with liposome-encapsulated irradiated Ebola virus: Protection in Mice Requires CD4 + T Cells . Journal of Virology, 2002, 76(18): 9176.
doi: 10.1128/JVI.76.18.9176-9185.2002 pmid: 136452
[6] Feldmann H, Jones S M , Daddario-DiCaprio K M, et al. Effective post-exposure treatment of Ebola infection. PLoS Pathogens, 2007, 3(1): e2.
doi: 10.1371/journal.ppat.0030002 pmid: 17238284
[7] Jacobs M, Aarons E, Bhagani S , et al. Post-exposure prophylaxis against Ebola virus disease with experimental antiviral agents: a case-series of health-care workers. The Lancet Infectious Diseases, 2015, 15(11): 1300-1304.
doi: 10.1016/S1473-3099(15)00228-5 pmid: 26321189
[8] WHO. Table of vaccine clinical trials.[ 2017-10-14]. Table of vaccine clinical trials. [2017-10-14].
[9] Jones S M, Feldmann H, Str?her U , et al. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nature Medicine, 2005, 11(7): 786-790.
doi: 10.1038/nm1258 pmid: 15937495
[10] Qiu X, Fernando L, Alimonti J B , et al. Mucosal immunization of cynomolgus macaques with the VSVDeltaG/ZEBOVGP vaccine stimulates strong Ebola GP-specific immune responses. PLoS One, 2009, 4(5): e5547.
doi: 10.1371/journal.pone.0005547
[11] Regules J A, Beigel J H, Paolino K M , et al. A recombinant vesicular stomatitis virus ebola vaccine. New England Journal of Medicine, 2017, 376(4): 330-341.
doi: 10.1056/NEJMoa1414216 pmid: 25830322
[12] Agnandji S T, Huttner A, Zinser M E , et al. Phase 1 Trials of rVSV Ebola vaccine in Africa and Europe- Preliminary Report. New England Journal of Medicine, 2016, 374(17): 1647-1660.
doi: 10.1056/NEJMoa1502924
[13] Medaglini D, Harandi A M, Ottenhoff T H , et al. Ebola vaccine R&D: Filling the knowledge gaps. Science Translational Medicine. 2015, 7(317): 317ps24-317ps24.
[14] Henao-Restrepo A M, Longini I M, Egger M , et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet, 2015, 386(9996): 857-866.
doi: 10.1016/S0140-6736(15)61117-5 pmid: 26248676
[15] Henao-Restrepo A M, Camacho A, Longini I M , et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola ?a Suffit!). Lancet, 2016, 389(10068): 505-518.
[16] Widdowson M A, Schrag S J, Carter R J , et al. Implementing an Ebola vaccine study-sierra leone. Mmwr Supplements, 2016, 65(3): 98.
doi: 10.15585/mmwr.su6503a14 pmid: 27387395
[17] Rivera A, Messaoudi I . Molecular mechanisms of Ebola pathogenesis. Journal of Leukocyte Biology, 2016, 100(5): 889-904.
doi: 10.1189/jlb.4RI0316-099RR pmid: 27587404
[18] Geisbert T W, Feldmann H . Recombinant vesicular stomatitis virus-based vaccines against Ebola and Marburg virus infections. The Journal of Infectious Diseases, 2011, 204(Suppl-3): S1075-1081.
doi: 10.1093/infdis/jir349 pmid: 3218670
[19] Lawson N D, Stillman E A, Whitt M A , et al. Recombinant vesicular stomatitis viruses from DNA. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(10): 4477-4481.
doi: 10.1073/pnas.92.10.4477 pmid: 7753828
[20] Schnell M J, Buonocore L, Whitt M A , et al. The minimal conserved transcription stop-start signal promotes stable expression of a foreign gene in vesicular stomatitis virus. Journal of Virology, 1996, 70(4): 2318-2323.
doi: 10.3109/13550289609146547 pmid: 8642658
[21] Garbutt M, Liebscher R, Wahl-Jensen V , et al. Properties of replication-competent vesicular stomatitis virus vectors expressing glycoproteins of filoviruses and arenaviruses. Journal of Virology, 2004, 78(10): 5458-5465.
doi: 10.1128/JVI.78.10.5458-5465.2004 pmid: 15113924
[22] Marzi A, Feldmann H, Geisbert T W , et al. Vesicular stomatitis virus-based vaccines for prophylaxis and treatment of filovirus infections. Journal of Bioterrorism & Biodefense, 2011, S1(4): 2157-2526-S1-004.
doi: 10.4172/2157-2526.S1-004 pmid: 3265573
[23] Shuchman M . Ebola vaccine trial in west Africa faces criticism. Lancet, 2015, 385(9981): 1933-1934.
doi: 10.1016/S0140-6736(15)60938-2 pmid: 25979835
[24] Mire C E, Matassov D, Geisbert J B , et al. Single-dose attenuated Vesiculovax vaccines protect primates against Ebola Makona virus. Nature, 2015, 520(7549): 688-691.
doi: 10.1038/nature14428 pmid: 25853476
[25] Clarke D K, Nasar F, Lee M , et al. Synergistic attenuation of vesicular stomatitis virus by combination of specific G gene truncations and N gene translocations. Journal of Virology, 2007, 81(4): 2056-2064.
doi: 10.1128/JVI.01911-06
[26] Marzi A, Engelmann F, Feldmann F , et al. Antibodies are necessary for rVSV/ZEBOV-GP-mediated protection against lethal Ebola virus challenge in nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(5): 1893-1898.
doi: 10.1073/pnas.1209591110 pmid: 23319647
[27] Menicucci A R, Sureshchandra S, Marzi A , et al. Transcriptomic analysis reveals a previously unknown role for CD8 +T-cells in rVSV-EBOV mediated protection . Scientific Reports, 2017, 7(1): 919.
doi: 10.1038/s41598-017-01032-8 pmid: 5430516
[28] Farooq F, Beck K, Paolino K M , et al. Circulating follicular T helper cells and cytokine profle in humans following vaccination with the rVSV-ZEBOV Ebola vaccine. Scientific Reports, 2016, 6: 27944.
doi: 10.1038/srep27944 pmid: 4914957
[29] Dahlke C, Kasonta R, Lunemann S , et al. Dose-dependent T-cell dynamics and cytokine cascade following rVSV-ZEBOV immunization. Ebiomedicine, 2017, 19: 107-118.
doi: 10.1016/j.ebiom.2017.03.045 pmid: 28434944
[30] 杨利敏, 李晶, 高福 , 等. 埃博拉病毒疫苗研究进展. 生物工程学报, 2015, 31(1): 1-23.
doi: 10.3760/cma.j.issn.1673-4211.2015.02.005
Yang L M, Li J, Gao F , et al. Overview of Ebola virus vaccine. Chinese Journal of Biotechnology, 2015, 31(1): 1-23.
doi: 10.3760/cma.j.issn.1673-4211.2015.02.005
[1] 朱嘉豪,陈婷,习欠云. miR-146a参与不同疾病的研究进展*[J]. 中国生物工程杂志, 2021, 41(9): 64-70.
[2] 杨琳,傅哲彦,吕正兵,舒建洪. 免疫佐剂分类及作用机制[J]. 中国生物工程杂志, 2019, 39(5): 114-119.
[3] 许嘉越,李紫倩,张革. 登革病毒3'UTRΔ30系列疫苗的研究进展[J]. 中国生物工程杂志, 2019, 39(3): 97-104.
[4] 刘俊伟, 常瑞恒, 回鹏, 董士尚, 王金凤, 孙波, 杨诚. 抗埃博拉病毒核蛋白抗体的制备与双抗夹心ELISA检测方法的建立[J]. 中国生物工程杂志, 2017, 37(10): 53-59.
[5] 许妍, 赵雪, 堵晶晶, 杨琼, 杨大洪, 蒲红州, 张顺华, 朱砺. 环状RNA研究进展[J]. 中国生物工程杂志, 2017, 37(10): 93-102.
[6] 孙鹏艳, 黎奎, 刘存宝, 姚宇峰, 褚晓杰, 白红妹, 杨旭, 黄惟巍, 孙文佳, 马雁冰. 埃博拉病毒GP和VP40蛋白在哺乳动物细胞中的共表达及病毒样颗粒装配[J]. 中国生物工程杂志, 2016, 36(12): 66-71.
[7] 李波,张耀洲. 抗菌肽Cecropin及其在转基因植物抗菌中的应用[J]. 中国生物工程杂志, 2008, 28(5): 122-127.
[8] 包福祥,何金生,曹贵方,王鑫,张莹,洪涛. 老年性痴呆抗体药物研究进展[J]. 中国生物工程杂志, 2008, 28(12): 107-111.
[9] 林娟,马骋,刘树滔,谢智,饶平凡. 青枯菌HPLC分析中样品制备方法的优化[J]. 中国生物工程杂志, 2006, 26(05): 63-68.
[10] 张山, 李平, 刘德立. 细胞色素P450酶系与除草剂代谢[J]. 中国生物工程杂志, 2004, 24(10): 18-21.
[11] 冯兴军, 王建华, 杨雅麟, 滕达, 刘立恒. 乳铁蛋白肽(Lactoferricin)作用机制研究进展[J]. 中国生物工程杂志, 2004, 24(1): 23-26.
[12] 胡振林, 孙树汉. DNA的免疫激活作用——Ⅰ.作用机理研究进展[J]. 中国生物工程杂志, 2002, 22(2): 48-55.
[13] 沈孝宙, 李建凡, MarcWelt. 基因绝缘子——一类新发现的基因调节元件[J]. 中国生物工程杂志, 2001, 21(6): 3-8.
[14] 李洪军, 胡宗利, 魏泓. 防御素(Defensin)研究进展[J]. 中国生物工程杂志, 2001, 21(3): 34-37.
[15] 高必达. 丁香假单胞菌环式脂肽毒素的生理和分子生物学研究[J]. 中国生物工程杂志, 2000, 20(4): 55-59.