Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (1): 126-134    DOI: 10.13523/j.cb.20180115
作物雄性不育与杂种优势利用专辑     
雄性不育在作物杂种优势中的应用途径分析
石子,宋伟(),赵久然()
北京市农林科学院玉米研究中心 DNA指纹及分子育种北京市重点实验室 北京 100097
Application of Male Sterility in Crop Heterosis
Zi SHI,Wei SONG(),Jiu-ran ZHAO()
Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
 全文: PDF(585 KB)   HTML
摘要:

雄性不育是植物雄性细胞或生殖器官丧失生理机能的现象,该现象的利用大大提高了杂交种生产的效率。植物雄性不育包含细胞质雄性不育、不受环境影响的核雄性不育、光温敏型雄性不育及化学诱导的雄性不育。这些不育类型也已经被以三系或二系的方式应用于很多作物的杂交种生产中。综述了雄性不育各个途径的研究进展及其在作物杂种优势中的应用。

关键词: 雄性不育杂种优势杂交种生产    
Abstract:

Male sterility is a phenomenon in which the male gametophyte or reproductive organs lose their physiological functions, and the application of the male sterility significantly increased the efficiency of hybrid production. Because of the different mechanisms, male sterility can be classified into cytoplasmic male sterility, genetic male sterility unaffected by environmental conditions, photo/ thermo-sensitive sterility and chemical induced sterility, which have all been applied in the crop hybrid production by the “three lines” or “two lines” system. Here, the recent research advances of all these different pathways and its application in crop heterosis are reviewed.

Key words: Male sterility    Heterosis    Crop hybrid production
收稿日期: 2017-12-01 出版日期: 2018-01-31
ZTFLH:  Q785  
基金资助: 国家科技支撑计划(2014BAD01B09);北京市科技新星计划(Z171100001117033);北京市科技计划(D151100004215001,D161100005716002);北京市农林科学院院级科技创新团队建设项目资助项目(JNKYT201603)
作者简介: 通讯作者 宋伟, 电子信箱: songwei1007@126.com|通讯作者 赵久然, 电子信箱: maizezhao@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
石子
宋伟
赵久然

引用本文:

石子,宋伟,赵久然. 雄性不育在作物杂种优势中的应用途径分析[J]. 中国生物工程杂志, 2018, 38(1): 126-134.

Zi SHI,Wei SONG,Jiu-ran ZHAO. Application of Male Sterility in Crop Heterosis. China Biotechnology, 2018, 38(1): 126-134.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180115        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I1/126

图1  雄性不育各个应用途径的示意图
[1] Mayr E.Joseph gottlieb Kolreuter’s contributions to biology. Osiris, 1986, 2(2): 135-176.
doi: 10.1086/368655
[2] Kaul M L H. Male Sterility in Higher Plants. Berlin: Springer Berlin Heidelberg,1988.
doi: 10.1007/978-3-642-83139-3
[3] Vedel F, Pla M, Vitart V, et al.Molecular basis of nuclear and cytoplasmic male sterility in higher plants. Plant Physiology & Biochemistry, 1994, 32(5): 601-618.
doi: 10.1104/pp.106.1.403
[4] Guo J, Liu Y.Molecular control of male reproductive development and pollen fertility in rice. Journal of Integrative Plant Biology, 2012, 54(12): 967.
doi: 10.1111/jipb.2012.54.issue-12
[5] Tester M, Langridge P.Breeding technologies to increase crop production in a changing world. Science, 2010, 327(5967): 818.
doi: 10.1126/science.1183700 pmid: 20150489
[6] Li S, Yang D, Zhu Y.Characterization and use of male sterility in hybrid rice breeding. Journal of Integrative Plant Biology, 2007, 49(6): 791-804.
doi: 10.1111/j.1744-7909.2007.00513.x
[7] 邓兴旺, 王海洋, 唐晓艳, 等. 杂交水稻育种将迎来新时代. 中国科学:生命科学, 2013, 43(10): 864-868.
Deng X W, Wang H Y, Tang X Y, et al.Hybrid rice breeding welcomes a new era of molecular crop design.Scientia Sinica Vitae, 2013, 43(10): 864-868.
[8] 王丽, 陈国菊, 曹必好, 等. 植物雄性不育研究进展. 中国科技论文在线.[2017-12-19]. .
Wang L, Chen G J, Cao B H, et al.Advances in plant male sterility. China Science Paper Online.[2017Advances in plant male sterility. China Science Paper Online.[2017-12-19]. .
[9] Wych R D.Production of hybrid seed corn. Corn & Corn Improvement, 1988, 18: 565-607.
doi: 10.2134/agronmonogr18.3ed.c9
[10] Mcrae D H.Advances in chemical hybridization. Plant Breeding Reviews,2011, 3: 169-191.
[11] Touzet P, Budar F.Unveiling the molecular arms race between two conflicting genomes in cytoplasmic male sterility. Trends in Plant Science, 2004, 9(12): 568-570.
doi: 10.1016/j.jmr.2009.12.014 pmid: 15564120
[12] Fujii S,Toriyama K.Genome barriers between nuclei and mitochondria exemplified by cytoplasmic male sterility. Plant & Cell Physiology, 2008, 49(10): 1484-1494.
doi: 10.1093/pcp/pcn102 pmid: 18625609
[13] Touzet P, Mayer E H.Cytoplasmic male sterility and mitochondrial metabolism in plants. Mitochondrion, 2014, 19: 166-171.
doi: 10.1016/j.mito.2014.04.009 pmid: 24769053
[14] Laser K D, Lersten N R.Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. The Botanical Review, 1972, 38(3): 425-454.
doi: 10.1007/BF02860010
[15] Hu J, Wang K, Huang W, et al.The rice pentatricopeptide repeat protein RF5 restores fertility in hong-lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. Plant Cell, 2012, 24(1): 109-122.
doi: 10.1105/tpc.111.093211 pmid: 22247252
[16] Chen L, Liu Y G.Male sterility and fertility restoration in crops. Annual Review of Plant Biology, 2014, 65(1): 579.
doi: 10.1146/annurev-arplant-050213-040119 pmid: 24313845
[17] 高金玉, 韩冰, 杨晓虹, 等. 禾本科植物雄性不育遗传机制与利用. 北方农业学报, 2017, 45(1): 25-32.
Gao J Y, Han B, Yang X H, et al.Genetic mechanism and utilization of the Gramineae male sterile.Journal of Northern Agriculture, 2017, 45(1): 25-32.
[18] Shinjo C,Omura T.Cytoplasmic male sterility in rice. Oryza sativa L. I. Fertilities of F_1, F_2 and offsprings obtained from their mutual reciprocal backcrosses, and segregation of complete male sterile plants. Japanese Journal of Genetics, 1969, 44(3): 149-156.
doi: 10.1266/jjg.44.149
[19] Lin S C,Yuan L P. Hybrid Rice Breeding in China//Innovative Approaches to Rice Breeding. Manila, Philippines: International Rice Research Institute, 1980: 35-51.
[20] Huang J Z, Zg E, Zhang H L, et al.Workable male sterility systems for hybrid rice: Genetics, biochemistry, molecular biology, and utilization. Rice, 2014, 7(1): 13.
doi: 10.1186/s12284-014-0013-6 pmid: 26055995
[21] Rogers J S.The Utilization of Male-sterile Inbred Lines in the Production of Corn Hybrids. In: Report on the Ninth Southern Corn Improvement Conference. Knoxville, Tennessee: Div Cereal Crops Dis Bur Pl Indust, Soils Agric Engin Beltsville, Md, 1950: 23-25.
[22] Su A, Song W, Xing J, et al.Identification of genes potentially associated with the fertility instability of S-type cytoplasmic male sterility in maize via bulked segregant RNA-Seq. PLoS One, 2016, 11(9): e0163489.
doi: 10.1371/journal.pone.0163489 pmid: 27669430
[23] 宋伟, 苏爱国, 邢锦丰, 等. 京724玉米自交系S型细胞质雄性不育系分子标记辅助选育研究. 玉米科学, 2016,(1): 33-36.
Song W, Su A G, Xing J F, et al.Study on breeding of new S-type cytoplasmic male sterile material from maize inbred line Jing724 with molecular marker assisted selection. Maize Sciences, 2016,(1): 33-36.
[24] 赵久然, 宋伟, 邢锦丰, 等. 玉米雄性不育系的选育方法:中国,ZL201310751112.6, 2016-01-13.[2017-04-15].
Zhao J R, Song W, Xing J F, et al.Maize Male Sterile Line Breeding Method: Chinese, ZL201310751112.6, 2016-01-13.[2017-04-15]..
[25] 赵久然, 宋伟, 邢锦丰, 等. 京科968三系配套杂交种制种方法: 中国,ZL201410493909.5, 2016-03-02.[2017-04-15]..
Zhao J R, Song W, Xing J F, et al.Three-Line Hybrid Seed Production Methods for Jingke968: Chinese, ZL201410493909.5, 2016-03-02.[2017-04-15]..
[26] 赵久然, 宋伟, 邢锦丰, 等. 京科528三系配套杂交种制种方法: 中国,Z201410743446.3, 2016-03-02.[2017-04-15]..
Zhao J R, Song W, Xing J F, et al.Three-Line Hybrid Seed Production Methods for Jingke528: Chinese, Z201410743446.3, 2016-03-02.[2017-04-15]. .
[27] 赵久然, 宋伟, 邢锦丰, 等. Nk718三系配套杂交种制种方法: 中国,ZL 2014 1 0493914.6, 2016-08-24.[2017-04-15]..
Zhao J R, Song W, Xing J F, et al.Three-Line Hybrid Seed Production Methods for Nk718: Chinese, ZL 2014 1 0493914.6, 2016-08-24.[2017-04-15]..
[28] 赵久然, 宋伟, 邢锦丰, 等. 京单38三系配套杂交种制种方. 中国发明专利,授权号ZL 2014 1 0495420.1, 2016-08-24.[2017-04-15]..
Zhao J R, Song W, Xing J F, et al.Three-Line Hybrid Seed Production Methods for Jingdan38: Chinese, ZL 2014 1 0495420.1, 2016-08-24.[2017-04-15]..
[29] 赵久然, 宋伟, 邢锦丰,等. NK971三系配套杂交种制种方法: 中国,ZL 2014 1 0742947.X, 2016-08-24.[2017-04-15]..
Zhao J R, Song W, Xing J F, et al.Three-Line Hybrid Seed Production Methods for Nk971: Chinese, ZL 2014 1 0742947.X, 2016-08-24.[2017-04-15]..
[30] Liu C G, Hou N, Liu L K, et al.A YA‐type cytoplasmic male-sterile source in common wheat. Plant Breeding, 2006, 125(5): 437-440.
doi: 10.1111/j.1439-0523.2006.01286.x
[31] Martin A C, Atienza S G, Barro F.Male fertility restoration of wheat in Hordeum chilense cytoplasm is associated with 6H ch S chromosome addition. Australian Journal of Agricultural Research, 2008, 59(3): 206-213.
doi: 10.1071/AR07239
[32] Yamagishi H, Bhat S R.Cytoplasmic male sterility in Brassicaceae crops. Breeding Science, 2014, 64(1): 38.
doi: 10.1270/jsbbs.64.38 pmid: 4031109
[33] Bisht D. S., Chamola R., Nath M., et al. Molecular mapping of fertility restorer gene of an alloplasmic CMS system in Brassica juncea containing Moricandia arvensis cytoplasm. Molecular Breeding, 2015, 35(1): 1-11.
doi: 10.1007/s11032-015-0202-z
[34] Atri C, Kaur B, Sharma S, et al.Substituting nuclear genome of Brassica juncea (L.) Czern & Coss. In cytoplasmic background of Brassica fruticulosa results in cytoplasmic male sterility. Euphytica, 2016, 209(1): 31-40.
doi: 10.1007/s10681-015-1628-4
[35] Liu Z, Mulpuri S, Feng J, et al.Molecular mapping of the Rf 3 fertility restoration gene to facilitate its utilization in breeding confection sunflower. Molecular Breeding, 2012, 29(2): 275-284.
doi: 10.1007/s11032-011-9563-0
[36] Reddy C V C M, Sinha B, Reddy A V V, et al. Maintenance of male sterility and fertility restoration in different CMS sources of sunflower (Helianthus annuus L.). Asian Journal of Plant Sciences, 2008, 7(8): 762-766.
doi: 10.3923/ajps.2008.762.766
[37] Sun H, Zhao L, Huang M.Studies on cytoplasmic-nuclear male sterile soybean. Science Bulletin, 1994, 39(2): 175-176.
[38] 李磊,杨庆芳. 栽培大豆双亲基因互作型不育材料的发现及其遗传推断. 安徽农业科学, 1995,(4): 304-306.
Li L, Yang Q F.Discovery of male sterility resulted from parental interactionin cultivated soybean and its genetic inference. Journal of Anhui Agriculture Sciences, 1995,(4): 304-306.
[39] Ding D, Gai J, Cui Z, et al.Development and verification of the cytoplasmic-nuclear male sterile soybean line NJCMS1A and its maintainer NJCMS1B. Science Bulletin, 1999, 44(2): 191-192.
doi: 10.1007/BF02884752
[40] Zhao L, Sun H,Huang M.The development and preliminary studies on cytoplasmic male sterile soybean line ZA. Soybean Science, 1998, 17: 268-270.
[41] Gai J Y, Cui Z L, Ji D F, et al.A report on the nuclear cytoplasmic male sterility from a cross between two soybean cultivars. Soybean Genetics Newsletter.[2017-12-19]..
[42] 张磊,戴瓯和. 大豆质核互作不育系W931A的选育研究. 中国农业科学, 1997, 30(6): 90-91.
Zhang L, Dai O H.Selection and breding of nucleo-cytoplasmic male sterile line W931A in soybean. Scientia Agricultura Sinica, 1997, 30(6): 90-91.
[43] Palmer R G, Gai J, Sun H, et al.Production and evaluation of hybrid soybean. Plant breeding reviwes, 2010, 21: 263-307.
doi: 10.1002/9780470650196.ch7
[44] Bai Y N,Gai J Y.Inheritance of male fertility restoration of the cytoplasmic-nuclear male-sterile line NJCMS1A of soybean [Glycine max (L) Merr.]. Euphytica, 2005, 145(1): 25-32.
doi: 10.1007/s10681-005-8497-1
[45] Zhao T J,Gai J Y.Discovery of new male-sterile cytoplasm sources and development of a new cytoplasmic-nuclear male-sterile line NJCMS3A in soybean. Euphytica, 2006, 152(3): 387-396.
doi: 10.1007/s10681-006-9226-0
[46] Wang Y, Zhao L, Wang X, et al.Molecular mapping of a fertility restorer gene for cytoplasmic male sterility in soybean. Plant Breeding, 2010, 129(1): 9-12.
doi: 10.1111/j.1439-0523.2009.01626.x
[47] Graybosch R A, Palmer R G.Male sterility in soybean (Glycine max). I. phenotypic expression of the ms2 mutant. American Journal of Botany, 1985, 72(11): 1751-1764.
doi: 10.2307/2443732
[48] Stephens J C,Holland R F.Cytoplasmic male-sterility for hybrid sorghum seed production. Agronomy Journal, 1954, 46(1): 20-23.
doi: 10.2134/agronj1954.00021962004600010006x
[49] Schertz K F, Ritchey J M.Cytoplasmic-genic male-sterility systems in sorghum. Crop Science, 1978, 18(5): 890-893.
doi: 10.2135/cropsci1978.0011183X001800050055x
[50] Quinby J R. Interaction of Genes and Cytoplasms in Male Sterility in Sorghum//35th Annual Corn and Sorghum Research Conference. Chicago: American Seed Trade Association, Corn and Sorghum Division, 1980: 175-184.
[51] Worstell J V, Kidd H J,Schertz K F.Relationships among male-sterility inducing cytoplasms of sorghum. Cropence, 1984, 24(1): 186-189.
doi: 10.2135/cropsci1984.0011183X002400010044x
[52] Rao N G P,Tripathi D P. Genetic analysis of cytoplasmic systems in sorghum. Indian Journal of Genetics & Plant Breeding. [2017-12-19].
[53] Webster O J,Singh S P.Breeding behavior and histological structure of a nondehiscent anther Character in Sorghum Vulgare Pers. Crop Science, 1964, 4: 656-658.
doi: 10.2135/cropsci1964.0011183X000400060032x
[54] Ross W M, Hackerott H L.Registration of seven isocytoplasmic Sorghum germplasm lines1 (Reg. Nos. GP 9 to GP 15). Crop Science, 1972,(5): 720-721.
doi: 10.2135/cropsci1972.0011183X001200050083x
[55] Burton G W.Cytoplasmic male-sterility in pearl millet (Pennisetum glaucum) (L.) R. Br.1. Agronomy Journal, 1958, 50(4): 230.
doi: 10.2134/agronj1958.00021962005000040018x
[56] Rai K N, Anand K K, Andrews D J, et al.Commerical viability of alternative cytoplasmic-nuclear male-sterility systems in pearl millet. Euphytica, 2001, 121(1): 107-114.
doi: 10.1023/A:1012039720538
[57] Hanna W W.Characteristics and stability of a new cytoplasmic-nuclear male-Sserile source in pearl millet. Crop Science, 1989, 29(6): 1457-1459.
doi: 10.2135/cropsci1989.0011183X002900060026x
[58] Rai K N.A new cytoplasmic-nuclear male sterility system in pearl millet. Plant Breeding, 1995, 114(5): 445-447.
doi: 10.1111/j.1439-0523.1995.tb00829.x
[59] Meyer V G.Male sterility from Gossypium harknessii. Journal of Heredity, 1975, 66: 23-27.
doi: 10.1093/oxfordjournals.jhered.a108566
[60] Palmer R G, Gai J, Dalvi V A, et al.Male sterility and hybrid production technology. Biology and Breeding of Food Legumes, 2011, 13: 193-207.
doi: 10.1079/9781845937669.0193
[61] Bohra A, Mallikarjuna N, Saxena K, et al.Harnessing the potential of crop wild relatives through genomics tools for pigeonpea improvement. Journal of Plant Biology, 2011, 37: 83-98.
[62] Saxena K B, Sultana R, Mallikarjuna N, et al.Male-sterility systems in pigeonpea and their role in enhancing yield. Plant Breeding, 2010, 129(2): 125-134.
doi: 10.1111/j.1439-0523.2009.01752.x
[63] Bhushan S K, Vijaya K R, Narayanrao T A, et al.ICPH 2671 – the world’s first commercial food legume hybrid. Plant Breeding, 2013, 132(5): 479-485.
[64] Albertsen M C, Phillips R L.Developmental cytology of 13 genetic male sterile loci in maize. Canadian Journal of Genetics & Cytology, 1981, 23(2): 195-208.
doi: 10.1139/g81-023
[65] Bedinger P.The remarkable biology of pollen. Plant Cell, 1992, 4(8): 879-887.
doi: 10.1105/tpc.4.8.879
[66] Neuffer M G, Coe E H,Wessler S R.Mutants of Mize. New York:Cold Spring Harbor Laboratory Press, 1997.
[67] Wu Y, Fox T W, Trimnell M R, et al.Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross‐pollinating crops. Plant Biotechnology Journal, 2016, 14(3): 1046.
doi: 10.1111/pbi.12477 pmid: 26442654
[68] Virmani S S, Sun Z X, Mou T M, et al.Two-Line Hybrid Rice Breeding Manual. Los Banos(philippines):International Rice Research Institute,2003.
[69] Chang Z, Chen Z, Wang N, et al.Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49): 14145.
doi: 10.1073/pnas.1613792113 pmid: 27864513
[70] Virmani S S. Ilyas-Ahmed M., Environment-sensitive genic male sterility (EGMS) in crops. Advances in Agronomy, 2001, 72(1): 139-195.
doi: 10.1016/S0065-2113(01)72013-5
[71] Shi M.The discovery and study of the photosensitive recessive male-sterile rice (oryza sative L.subsp.japonica). Scientia Agricultura Sinica, 1985.
[72] Deng H, Shu F,Yuan D.An overview of research and utilization of annong S1. Hybrid Rice, 1999.
[73] Ding J, Lu Q, Ouyang Y, et al.A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proceedings of the National Academy of Sciences, 2012, 109(7): 2654-2659.
doi: 10.1073/pnas.1121374109
[74] Lu Q, Li X H, Guo D, et al.Localization of pms3, a gene for photoperiod-sensitive genic male sterility, to a 28.4-kb DNA fragment. Molecular Genetics and Genomics, 2005, 273(6): 507.
doi: 10.1007/s00438-005-1155-4 pmid: 15912317
[75] Monéger F, Smart C J,Leaver C J.Nuclear restoration of cytoplasmic male sterility in sunflower is associated with the tissue-specific regulation of a novel mitochondrial gene. EMBO J,1994, 13(1): 8-17.
doi: 10.1002/j.1460-2075.1994.tb06230.x pmid: 8306974
[76] Zhou H, Liu Q, Li J, et al.Photoperiod-and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Research, 2012, 22(4): 649-660.
doi: 10.1038/cr.2012.28
[77] Zhang H, Xu C, He Y, et al.Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production. Proceedings of the National Academy of Sciences of the United States of America, 2012, 110(1): 76.
doi: 10.1073/pnas.1213041110 pmid: 23256151
[78] Hama E, Takumi S, Ogihara Y, et al.Pistillody is caused by alterations to the class-B MADS-box gene expression pattern in alloplasmic wheats. Planta, 2004, 218(5): 712-720.
doi: 10.1007/s00425-003-1157-6
[79] Murai K, Takumi S, Koga H, et al.Pistillody, homeotic transformation of stamens into pistil‐like structures, caused by nuclear-cytoplasm interaction in wheat. Plant Journal, 2002, 29(2): 169-181.
doi: 10.1046/j.0960-7412.2001.01203.x
[80] Ogihara Y, Kurihara Y, Futami K, et al.Photoperiod-sensitive cytoplasmic male sterility in wheat: nuclear-mitochondrial incompatibility results in differential processing of the mitochondrial orf25 gene. Current Genetics, 1999, 36(6): 354-362.
doi: 10.1007/s002940050510 pmid: 10654089
[81] Singh S P, Srivastava R, Kumar J.Male sterility systems in wheat and opportunities for hybrid wheat development. Acta Physiologiae Plantarum, 2015, 37(1): 1713.
doi: 10.1007/s11738-014-1713-7
[82] Adugna A, Nanda G S, Singh K, et al.A comparison of cytoplasmic and chemically-induced male sterility systems for hybrid seed production in wheat (Triticum aestivum L.). Euphytica, 2004, 135(3): 297-304.
doi: 10.1023/B:EUPH.0000013320.28114.c6
[1] 苏爱国,宋伟,王帅帅,赵久然. 玉米细胞质雄性不育及其育性恢复基因的研究进展[J]. 中国生物工程杂志, 2018, 38(1): 108-114.
[2] 付志远,秦永田,汤继华. 主要作物光温敏核雄性不育基因的研究进展与应用*[J]. 中国生物工程杂志, 2018, 38(1): 115-125.
[3] 吴锁伟,万向元. 利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系[J]. 中国生物工程杂志, 2018, 38(1): 78-87.
[4] 田有辉,万向元. 玉米花药发育的细胞生物学与分子遗传学的研究方法[J]. 中国生物工程杂志, 2018, 38(1): 88-99.
[5] 柳双双,吴锁伟,饶力群,万向元. 玉米核雄性不育的分子机制研究与应用分析[J]. 中国生物工程杂志, 2018, 38(1): 100-107.
[6] 余自青, 吴锁伟, 张丹凤, 柳双双, 谢科, 饶力群, 万向元. 玉米隐性核不育突变体ms14的遗传分析与基因定位[J]. 中国生物工程杂志, 2016, 36(10): 8-14.
[7] 马浪浪, 江舟, 黄小波, 沈亚欧, 潘光堂. 植物DNA甲基化调控研究进展[J]. 中国生物工程杂志, 2013, 33(9): 101-110.
[8] 王超, 安学丽, 张增为, 杨青, 饶力群, 陈信波, 方才臣, 万向元. 植物隐性核雄性不育基因育种技术体系的研究进展与展望[J]. 中国生物工程杂志, 2013, 33(10): 124-130.
[9] 陈玉辉, 许向阳, 李景富, 李桂英. 雄性不育基因工程及其在蔬菜上的应用[J]. 中国生物工程杂志, 2004, 24(6): 12-18.
[10] 李祥, 易自力, 蔡能. 应用基因工程技术创造植物雄性不育系[J]. 中国生物工程杂志, 2002, 22(6): 28-32.
[11] 李胜国, 刘玉乐, 田波. 植物花粉发育的分子生物学研究进展[J]. 中国生物工程杂志, 1997, 17(2): 16-21,58.
[12] 王建革, 李集临, 薛玺. 小麦细胞质雄性不育研究的回顾[J]. 中国生物工程杂志, 1995, 15(4): 32-36.
[13] 马恩诚. 雄性不育基因的开发[J]. 中国生物工程杂志, 1990, 10(5): 57-58.
[14] 黎垣庆, 邓鸿德, 袁隆平. 提高水稻双胚苗和不定胚频率的研究[J]. 中国生物工程杂志, 1990, 10(2): 56-60.
[15] 蔡以欣, 何国顺, 谢雍, 汪训明, 王顺德, 叶正祥, 刘玉顺, 王健. 烟草雄性不育系叶绿体中DNA小质环分子的发现[J]. 中国生物工程杂志, 1981, 1(3): 36-36.