Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (12): 40-48    DOI: 10.13523/j.cb.20171207
研究报告     
HOG1抑制剂调节球头三型孢菌多元醇生产及机理 *
顾丽娜1,李良智1,2(),郭伟强1,顾竟生1,姚雪梅1,鞠鑫1
1 苏州科技大学化学生物与材料工程学院 苏州 215009
2 新加坡国立大学生物科学系 新加坡 117543
The Regulation on Polyols Production by Trichosporonoides oedocephalis with HOG1 Inhibitors and Its Mechanism
Li-na GU1,Liang-zhi LI1,2(),Wei-qiang GUO1,Jing-sheng GU1,Xue-mei YAO1,Xin JU1
1 School of Chemistry, Biology, and Materials Engineering, Suzhou University of Science and Technology,Suzhou 215009, China
2 Department of Biological Sciences, National University of Singapore, Singapore 117543
 全文: PDF(918 KB)   HTML
摘要: 目的

采用HOG1抑制剂对球头三型孢菌产多元醇进行调控。

方法

向培养基中加入SB239063、SB202190和SB203580三种抑制剂进行发酵实验,比较三种抑制剂对发酵的影响。

结果

实验结果表明SB239063可以降低球头三型孢菌细胞内胞浆3-磷酸甘油脱氢酶(ctGPD)的酶活,提高赤藓糖还原酶(ER)的酶活。此外对HOG1和Phospho-HOG1的Western blot结果分析显示,SB239063还会抑制球头三型孢菌细胞内HOG1的脱磷酸化。最终添加10μmol/L SB239063使发酵120 h后的多元醇产物中甘油产量下降20.57%,赤藓糖醇产量提高31.16%,底物转化率提高24.73%。

结论

SB239063可以降低球头三型孢菌产甘油的能力,提高赤藓糖醇的产量。

关键词: 球头三型孢菌HOG1抑制剂赤藓糖醇赤藓糖还原酶    
Abstract: Objective:

To regulate the production of polyols by Trichosporonoides oedocephalis employing HOG1 inhibitors.

Methods:

SB239063, SB202190 and SB203580 were added into the medium to conduct fermentation experiments, and the influence of three inhibitors on the fermentation was compared.

Results:

The experimental results showed SB239063 would decrease the ctGPD enzyme activity of Trichosporonoides oedocephalis, and enhance erythritol reductase(ER)enzyme activity at the same time.Furthermore, the Western blot analysis of HOG1 and phospho-HOG1demonstrated that SB239063 also inhibited the dephosphorylation of HOG1. After 120 h fermentation, the addition of 10μmol/L SB239063 decreased glycerol production by 20.57% and increased erythritol production by 31.16%.In other words, the conversion rate of glucose was increased by 24.73%.

Conclusion:

SB239063 weakened the ability to produce glycerol of Trichosporonoides oedocephalis and therefore promoted erythritol yield.

Key words: Trichosporonoides oedocephalis    HOG1 inhibitors    Erythritol    Erythritol reductase
收稿日期: 2017-05-29 出版日期: 2017-12-16
ZTFLH:  Q789  
基金资助: 国家自然科学基金(21376156)、江苏省高校“青蓝工程”资助项目
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
顾丽娜
李良智
郭伟强
顾竟生
姚雪梅
鞠鑫

引用本文:

顾丽娜,李良智,郭伟强,顾竟生,姚雪梅,鞠鑫. HOG1抑制剂调节球头三型孢菌多元醇生产及机理 *[J]. 中国生物工程杂志, 2017, 37(12): 40-48.

Li-na GU,Liang-zhi LI,Wei-qiang GUO,Jing-sheng GU,Xue-mei YAO,Xin JU. The Regulation on Polyols Production by Trichosporonoides oedocephalis with HOG1 Inhibitors and Its Mechanism. China Biotechnology, 2017, 37(12): 40-48.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20171207        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I12/40

图1  HOG1抑制剂对球头三型孢菌发酵的影响
图2  添加HOG1抑制剂的发酵时间曲线
图3  添加HOG1抑制剂形成的抑菌圈
Time (h) control SB202190 SB203580 SB239063
24 100 99 ± 2 96 ± 3 90 ± 1
48 100 92 ± 1 94 ±2 96 ± 3
72 100 96 ± 2 87 ± 1 80 ± 1
96 100 95 ± 1 86 ± 1 81 ± 1
120 100 94 ± 1 92 ± 2 87 ± 2
表1  MTT法测定球头三型孢菌细胞活性(%)
图4  HOG1和Phospho-HOG1的Western blot 分析
发酵时间(h) Specificactivity of ctGPD(mU/mg protein)
control SB202190 SB203580 SB239063
24 18.67 ± 0.29 18.37 ± 0.32 11.55 ± 0.25 15.03 ± 0.31
48 17.58 ± 0.26 17.33 ± 0.17 7.79 ± 0.09 14.23 ± 0.28
72 6.99 ± 0.18 6.64 ± 0.36 5.85 ± 0.12 6.12 ± 0.13
96 4.28 ± 0.16 4.18 ± 0.24 5.43 ± 0.11 4.05 ± 0.08
120 3.26 ± 0.13 3.23 ± 0.19 3.47 ± 0.08 3.17 ± 0.07
表2  HOG1抑制剂对ctGPD酶活的影响
发酵时间(h) Specificactivity of ER(mU/mg protein)
control SB202190 SB203580 SB239063
24 327.59 ± 10.23 240.33 ± 7.39 251.57 ± 10.31 278.03 ± 11.21
48 227.63 ± 8.76 180.77 ± 6.29 167.83 ± 2.78 196.58 ± 9.73
72 126.52 ± 7.82 127.79 ± 6.34 129.26 ± 2.81 168.53 ± 5.27
96 104.49 ± 5.43 108.12 ± 5.76 110.41 ± 1.98 136.32 ± 4.19
120 87.34 ± 3.86 78.93 ± 3.21 80.13 ± 1.76 92.73 ± 2.17
表3  HOG1抑制剂对ER酶活的影响
[1] Jovanovi B, Mach R L, Machaigner A R . Erythritol production on wheat straw using Trichoderma reesei. AMB Express, 2014,4(1):1-12.
doi: 10.1186/2191-0855-4-1 pmid: 3901786
[2] Hashino E, Kuboniwa M, Alghamdi S A , et al. Erythritol alters microstructure and metabolomic profiles of biofilm composed of Streptococcus gordonii and Porphyromonas gingivalis. Molecular Oral Microbiology, 2013,28(6):435-451.
doi: 10.1111/omi.12037 pmid: 23890177
[3] 肖素荣, 李京东 . 赤藓糖醇的特性及应用. 中国食物与营养, 2008,5:26-28.
doi: 10.3969/j.issn.1006-9577.2008.05.008
Xiao S R, Li J D . Erythritol characteristics and its application. Food and Nutrition in China, 2008,5:26-28.
doi: 10.3969/j.issn.1006-9577.2008.05.008
[4] 张佳丽, 姚军 . 赤藓糖醇在龋病预防中的应用. 医学综述, 2010,16(4):570-571.
doi: 10.3969/j.issn.1006-2084.2010.04.031
Zhang J L, Yao J . The research of erythritol in preventing caries . Medical Recapitulate. 2010,16(4):570-571.
doi: 10.3969/j.issn.1006-2084.2010.04.031
[5] Mirończuk A M, Biegalska A, Dobrowolski A . Functional overexpression of genes involved in erythritol synthesis in the yeast Yarrowia lipolytica. Biotechnology for Biofuels, 2017,10:77.
doi: 10.1186/s13068-017-0772-6 pmid: 5366165
[6] Deng H H, Han Y, Liu Y Y , et al. Identification of a newly isolated erythritol-producing yeast and cloning of its erythrose reductase genes. Journal of Industrial Microbiology & Biotechnology, 2012,39(11):1663-1672.
doi: 10.1007/s10295-012-1162-5 pmid: 22743789
[7] Kobayashi Y, Yoshida J, Iwata H , et al. Gene expression and function involved in polyol biosynthesis of Trichosporonoides megachiliensis under hyper-osmotic stress. Journal of Bioscience and Bioengineering, 2012,115(6):645-650.
[8] 吴雪昌, 胡森杰, 钱凯先 . 酵母HOG-MAPK途径. 中国细胞生物学学报, 2005,27(3):247-252.
Wu X C, Hu S J, Qian K X . HOG-MAPK pathway in yeast. Chinese Journal of Cell Biology, 2005,27(3):247-252.
[9] 阮海华, 李西川, 兰蓓 , 等. 高渗透压甘油信号转导途径. 细胞生物学杂志, 2006,28(5):651-655.
Ruan H H, Li X C, Lan B , et al. High osmolarity glycerol MAP kinase signal transduction pathway. Chinese Journal of Cell Biology, 2006,28(5):651-655.
[10] Kayingo G, Wong B W . The MAP kinase Hog1p differentially regulates stress-induced production and accumulation of glycerol and d-arabitol in Candida albicans. Microbiology, 2005,151(9):2987-2999.
doi: 10.1099/mic.0.28040-0 pmid: 16151209
[11] Dinér P, Vilg J V, Kjellén J , et al. Design, synthesis, and characterization of a highly effective Hog1inhibitor: a powerful tool for analyzing MAP kinase signaling in yeast. PLoS One, 2011,6(5):e20012.
doi: 10.1371/journal.pone.0020012
[12] Li L Z, Zhang H X, Fu J L , et al. Enhancement of ribitol production during fermentation of Trichosporonoides oedocephalis ATCC 16958 by optimizing the medium and altering agitation strategies. Biotechnology and Bioprocess Engineering, 2012,17(2):236-241.
doi: 10.1007/s12257-011-0359-1
[13] Li L Z, Yang T Y, Hu C Y , et al. Transformation of the yeast Trichosporonoides oedocephalis. Antonie van Leeuwenhoek Journal of Microbiology, 2016,109(2):305-309.
doi: 10.1007/s10482-015-0633-x pmid: 26671413
[14] Li L Z, Yang T Y, Guo W Q , et al. Construction of an efficient mutant strain of Trichosporonoides oedocephalis with HOG1 gene deletion for production of erythritol. Journal of Microbiology & Biotechnology, 2016,26(4):700-709.
[15] Bownik A . In vitro effects of staphylococcal leukocidin LukE/LukD on the proliferative ability of lymphocytes isolated from common carp (Cyprinus carpio L.). Fish & Shellfish Immunology, 2006,20(4):656-659.
doi: 10.1016/j.fsi.2005.07.002 pmid: 16183304
[16] Penttinen P, Pelkonen J, Huttunen K , et al. Interactions between Streptomyces californicus and Stachybotrys chartarum can induce apoptosis and cell cycle arrest in mouse RAW264.7 macrophages. Toxicology & Applied Pharmacology, 2005,202(3):278-288.
doi: 10.1016/j.taap.2004.07.002
[17] Sanchez N S, Konigsberg M . Using yeast to easily determine mitochondrial functionality with 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenyltetrazolium bromide (MTT) assay. Biochemistry and Molecular Biology Education, 2006,34(3):209-212.
doi: 10.1002/bmb.2006.49403403209 pmid: 21638676
[18] Ryu Y H, Kim Y H, Lee J Y , et al. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma. PLoS One, 2013,8(6):e66231.
doi: 10.1371/journal.pone.0066231 pmid: 23799081
[19] 王正祥, 诸葛健 . 产甘油假丝酵母甘油代谢关键酶的研究. 微生物学报, 2000,40(2):180-187.
Wang Z X, Zhuge J . The key enzymes of metabolisms of glycerol in Candida glycerolgenesis. Acta Microbiologica Sinica, 2000,40(2):180-187.
[20] Ookura T, Azuma K, Isshiki K , et al. Primary structure analysis and functional expression of erythrose reductases from erythritol-producing fungi (Trichosporonoides megachiliensis SNG-42). Bioscience, Biotechnology, and Biochemistry, 2005,69(5):944-951.
[21] O’Rourke S M, Herskowitz I, O’Shea E K , et al. Yeast go the whole HOG for the hyperosmotic response. Trends in Genetics, 2002,18(8):405-412.
doi: 10.1016/S0168-9525(02)02723-3 pmid: 12142009
[22] Macia J, Regot S, Peeters T , et al. Dynamic signaling in the Hog1 MAPK pathway relies on high basal signal transduction. Science Signaling, 2009, 2(63): ra13.
doi: 10.1126/scisignal.2000056 pmid: 19318625
[23] Westfall P J, Thorner J . Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: Use of an analog-sensitive HOG1 allele. Eukaryotic Cell, 2006,5(8):1215-1228.
doi: 10.1128/EC.00037-06 pmid: 1539154
[24] 陈献忠, 王正祥, 诸葛健 . 酵母细胞甘油代谢与生理功能研究进展. 中国生物工程杂志, 2010,30(5) : 140-148.
Chen X Z, Wang Z X, Zhuge J . Progress in glycerol metabolism and its physiological function in yeast cells. China Biotechnology, 2010,30(5) : 140-148.
[25] Remize F, Barnavon L, Dequin S . Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae. Metabolic Engineering, 2001,3(4):301-312.
doi: 10.1006/mben.2001.0197 pmid: 11676566
[26] Moon H J, Jeya M, Kim I W , et al. Biotechnological production of erythritol and its applications. Applied Microbiology and Biotechnology, 2010,86(4):1017-1025.
doi: 10.1007/s00253-010-2496-4 pmid: 20186409
[27] Sawada K, Taki A, Yamakawa T , et al. Key role for transketolase activity in erythritol production by Trichosporonoides megachiliensis SN-G42. Journal of Bioscience and Bioengineering , 2009,108(5) : 385-390.
doi: 10.1016/j.jbiosc.2009.05.008 pmid: 19804861
[28] Sánchez-Fresneda R Guirao-Abad J P, Argüelles A , et al. Specific stress-induced storage of trehalose, glycerol and d-arabitol in response to oxidative and osmotic stress in Candida albicans. Biochemicaland Biophysical Research Communications, 2013,430(4):1334-1339.
doi: 10.1016/j.bbrc.2012.10.118 pmid: 23261427
[1] 刘鹏, 王泽南, 张仕发, 李莹. 丛梗孢酵母发酵产赤藓糖醇的响应面优化[J]. 中国生物工程杂志, 2011, 31(5): 69-74.
[2] 刘鹏 王泽南 张仕发 李莹. 丛梗孢酵母发酵产赤藓糖醇的响应面优化[J]. 中国生物工程杂志, 2011, 31(05): 0-0.