Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (3): 89-96    DOI: 10.13523/j.cb.20180312
综述     
赖氨酰内肽酶特性及其表达、应用的研究进展
曾杰()
江苏恒瑞医药股份有限公司 国家靶向药物工程技术研究中心 连云港 222047
Advances in Study of Properties, Recombinant Expression and Applications of Lysyl Endopeptidase
Jie ZENG()
Jiangsu Hengrui Medicine Co. Ltd., National Engineering Technology Research Center of Targeted Drugs, Lianyungang 222047, China
 全文: PDF(636 KB)   HTML
摘要:

赖氨酰内肽酶是一种重要的工具酶,广泛应用于科学研究及工业化生产。目前市场上的赖氨酰内肽酶大多是从天然微生物中提取获得,其高昂的价格限制了其广泛运用,重组表达能够解决产量的难题。首次对赖氨酰内肽酶进行了综述,包括赖氨酰内肽酶的来源、结构、功能性质及其主要应用,并重点总结了近年来的重组表达进展,同时对今后的研究方向进行了展望。

关键词: 赖氨酰内肽酶Lys-C无色杆菌蛋白酶I铜绿假单胞菌蛋白酶IV    
Abstract:

Lysyl endopeptidase is an important enzyme as a tool for biotechnological purposes and industrial production. However, its applications are obstructed by its high costs of production, due to the current lysyl endopeptidase products are extracted from the native bacteria with very low yields. Nevertheless, the recombinant expression system have solved this problem perfectly. A review of recent progress in lysyl endopeptidase for the first time was presented. The origins, structure and function of lysyl endopeptidase were mainly focused on. Furthermore, the successful expression of recombinant lysyl endopeptidase were aslo summarized and analyzed. In addition, the potential perspective of lysyl endopeptidase for future research were further discussed.

Key words: Lysyl endopeptidase    Lys-C    Achrornobacter protease I    Pseudomonas aeruginosa    Protease IV
收稿日期: 2017-10-03 出版日期: 2018-04-04
ZTFLH:  Q814  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曾杰

引用本文:

曾杰. 赖氨酰内肽酶特性及其表达、应用的研究进展[J]. 中国生物工程杂志, 2018, 38(3): 89-96.

Jie ZENG. Advances in Study of Properties, Recombinant Expression and Applications of Lysyl Endopeptidase. China Biotechnology, 2018, 38(3): 89-96.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180312        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I3/89

图1  赖氨酰内肽酶的晶体结构[15]
Substrate Km/ Kcat [mmol/L(L/s)]
API (A. lyticus)[1,16]
Lys-C (Lysobacter sp.
IB-9374) [2]
Protease IV
(P. aeruginosa) [5]
Tos-Gly-Pro-Lys-pNA 4.4
Tos-Gly-Pro-Arg-pNA 0
Val-Leu-Lys- pNA 2.6
Lys-pNA 1.75 1 0
Arg-pNA 0
Bz-Arg-pNA 0
Bz-Lys-pNA 12.3 42
Ac-Lys-pNA 115
Bz-Lys-OMe 2480 29 000
Tos-Lys-OMe 5700 14 600
Tos-Arg-OMe 0.14
Bz-Orn-OMe 10.4 13
表1  赖氨酰内肽酶的底物特异性
性质 Lys-C (A.lyticus, L.enzymogenes) Protease IV (P.aeruginosa)
等电点 6.8~6.9[2,12] 8.7[3, 5]
最适温度 50℃[2] 45℃[5]
最适pH pH8.5~10.7[2,12], pH9[15] pH10.0[5]
耐盐性 5~7mol/L 尿素、0.1% SDS[12,15] 8mol/L 尿素[3]
抑制酶活条件 NaCl,盐酸胍[8] ≥2mol/L NaCl或pH<4[3]
抑制剂 TLCK(N-Tosyl-L-lysine chloromethyl ketone),
PMSF(phenylmethanesulfonyl fluoride)[12]
DTT, 2-巯基乙醇[3, 5]; TLCK(totally abolish),
PMSF(partially inhibit)[5]
表2  赖氨酰内肽酶的特征
来源 产酶菌株 天然表达产量 酶比活
无色杆菌 A. lyticus M497-1[1] 32U/L[2] 9.1U/mg[3]
溶杆菌 Lysobacter sp. IB-9374[2] 183U/L[2]
L. enzymogenes ATCC 29487[5] 15U/L[2];5.6mg/L (折合50.96U/L)[7]
铜绿假单胞菌[15] P. aeruginosa PAO1 12.05U/(L·OD600) 14.6U/mg[3],52~89U/mg[4]
P. aeruginosa PA103-29 NR
P. aeruginosa 6294 28.01U/(L·OD600)
表3  赖氨酰内肽酶的天然表达
来源 宿主菌 表达载体 表达产物 产量 文献
A. lyticus M497-1 E.coli pKK233-2 酶原(未基因优化) 0.48mg/L(a) [21]
A. lyticus M497-1 E. coli JA221 pKYN200 酶原变体H210S、W169F 0.2~0.4mg/L(b) [24]
L. enzymogenes ATCC 27796 E. coli JM109 pJOE 酶原MGSK-Lys-C (560±33)U /L(d) [7]
P. aeruginosa E. coli BL21(DE3) pET32a 融合酶原Trx-pro-protease IV 36.6mg/L(b)
1.7g/L(c)
[11]
[3]
A. lyticus P. pastoris KM71H pPICZαA 酶原变体K30R NR [15]
A. lyticus P. pastoris X-33 pPICZαA 成熟肽酶 NR [23]
Table 4  Recombinant expression of lysyl endopeptidase
[1] Masaki T, Nakamura K, Isono M , et al. A new proteolytic enzyme from Achromobacter lyticus M497-I. Agricultural and Biological Chemistry, 1978,42(7):1443-1445.
doi: 10.1271/bbb1961.42.1443
[2] Chohnan S, Nonaka J, Teramoto K , et al. Lysobacter strain with high lysyl endopeptidase production. Federation of European Materials Societies Microbiology Letters, 2002,213(1):13-20.
doi: 10.1111/j.1574-6968.2002.tb11279.x pmid: 12127482
[3] Zhao M Z, Cai M, Wu F L , et al. Recombinant expression,refolding,purification and characterization of Pseudomonas aeruginosa protease IV in Escherichia coli. Protein Expression and Purification, 2016,126:69-76.
doi: 10.1016/j.pep.2016.05.019 pmid: 27260967
[4] Elliott B W, Cohen C . Isolation and characterization of a lysine-specific protease from Pseudomonas aeruginosa. Journal of Biological Chemistry, 1986,261(24):11259-11265.
[5] Engel L S, Hill J M, Caballero A R , et al. Protease IV, a Unique extracellular protease and virulence factor from Pseudomonas aeruginosa. Journal of Biological Chemistry, 1998,273(27):16792-16797.
doi: 10.1074/jbc.273.27.16792 pmid: 9642237
[6] Jekel P A, Weijer W J, Beintema J J . Use of endoproteinase Lys-C from Lysobacter enzymogenes in protein sequence analysis. Analytical Biochemistry, 1983,134(2):347-354.
doi: 10.1016/0003-2697(83)90308-1 pmid: 6359954
[7] Stressler T, Eisele T, Meyer S , et al. Heterologous expression and pro-peptide supported refolding of the high specific endopeptidase Lys-C. Protein Expression and Purification, 2016,118:31-38.
doi: 10.1016/j.pep.2015.09.024 pmid: 26431800
[8] Kuhlman P A, Chen R J, Alcantara J , et al. Rapid purification of Lys-C from Lysobacter enzymogenes cultures. BioProcess Techinical, 2009, 28-38.
[9] Oh J, Li X H, Kim S K , et al. Post-secretional activation of Protease IV by quorum sensing in Pseudomonas aeruginosa. Scientific Reports, 2017,7(1):4416.
doi: 10.1038/s41598-017-03733-6 pmid: 28667333
[10] Caballero A, Thibodeaux B, Marquart M , et al. Pseudomonas keratitis: protease IV gene conservation,distribution,and production relative to virulence and other Pseudomonas proteases. Investigative Ophthalmology & Visual Science, 2004,45(2):522-530.
doi: 10.1167/iovs.03-1050 pmid: 14744894
[11] 赵明治, 徐平, 吴飞林 , 等. 一种赖氨酰肽链内肽酶的原核重组表达与制备方法. 中国,CN105950593A, 2016-09-21. 一种赖氨酰肽链内肽酶的原核重组表达与制备方法. 中国,CN105950593A,2016-09-21. .
Zhao M Z, Xu P, Wu F L , et al. A Process for Preparation of Lysyl Endopeptidase by Prokaryotic Recombinant Expression: China,CN105950593A, 2016-09-21. A Process for Preparation of Lysyl Endopeptidase by Prokaryotic Recombinant Expression: China,CN105950593A,2016-09-21. .
[12] Tsunasawa S, Masaki T, Hirose M , et al. The primary structure and structural characteristics of Achromobacter lyticus protease I,a lysine-specific serine protease. Journal of Biological Chemistry, 1989,264(7):3832-3839.
pmid: 2492988
[13] Traidej M, Marquart M E, Caballero A R , et al. Identification of the active site residues of Pseudomonas aeruginosa protease IV - Importance of enzyme activity in autoprocessing and activation. Journal of Biological Chemistry, 2003,278(4):2549-2553.
doi: 10.1074/jbc.M208973200
[14] Ohnishi Y, Yamada T, Kurihara K , et al. Neutron and X-ray crystallographic analysis of Achromobacter protease I at pD 8.0:protonation states and hydration structure in the free-form. Biochimica et Biophysica Acta, 2013,1834(8):1642-1647.
doi: 10.1016/j.bbapap.2013.05.012 pmid: 23714114
[15] Asztalos P, Müller A , H?lke W,et al. Atomic resolution structure of a lysine-specific endoproteinase from Lysobacter enzymogenes suggests a hydroxyl group bound to the oxyanion hole. Acta crystallographica. Section D, Biological Crystallography, 2014,70(7):1832-1843.
doi: 10.1107/S1399004714008463 pmid: 25004961
[16] Masaki T, Fujihashi T, Nakamura K , et al. Studies on a new proteolytic enzyme from Achromobacter lyticus M497-1. II. specificity and inhibition studies of Achromobacter protease I. Biochimica et Biophysica Acta, 1981,660(1):51-55.
doi: 10.1016/0005-2744(81)90107-8 pmid: 6168293
[17] Tizon R U, Serrano A E, Traifalgar R F . Effects of pH on amylase,cellulase and protease of the Angelwing clam,Pholas orientalis. European Journal of Experimental Biology, 2012,2(6):2280-2285.
[18] Shiraki K, Sakiyama F . Histidine 210 mutant of a trypsin-type Achromobacter protease I shows broad optimum pH range. Journal of Bioscience and Bioengineering, 2002,93(3):331-333.
doi: 10.1016/S1389-1723(02)80038-X pmid: 16233210
[19] Shiraki K, Norioka S, Li S , et al. Electrostatic role of aromatic ring stacking in the pH-sensitive modulation of a chymotrypsin-type serine protease,Achromobacter protease I. European Journal of Biochemistry, 2002,269(16):4152-4158.
doi: 10.1046/j.1432-1033.2002.03110.x pmid: 12180992
[20] Conibear T C, Willcox M D, Flanagan J L , et al. Characterization of protease IV expression in Pseudomonas aeruginosa clinical isolates. Journal of Medical Microbiology, 2012,61(2):180-190.
doi: 10.1099/jmm.0.034561-0 pmid: 21921113
[21] Ohara T, Makino K, Shinagawa H , et al. Cloning,nucleotide sequence,and expression of Achromobacter protease I gene. Journal of Biological Chemistry, 1989,264(34):20625-20631.
[22] Srinivasa B K, Pulicherla K K, Antony A , et al. Cloning and expression of recombinant human GMCSF from Pichia pastoris GS115--a progressive strategy for economic production. American Journal of Therapeutics, 2014,21(6):462-469.
doi: 10.1097/MJT.0000000000000040 pmid: 24531404
[23] 马妍, 付志成, 范开 . 重组赖氨酸内肽酶构建表达及活性方法研究. 重庆理工大学学报(自然科学版), 2015,29(4):53-59.
Ma Y, Fu Z C, Fan K . Research of recombinant lysine endopetidase construction expression and activity. Journal of Chongqing University of Technology(Natural Science), 2015,29(4):53-59.
[24] Ito L, Shiraki K, Uchida T , et al. Crystallization and preliminary crystallographic analysis of Achromobacter protease I mutants. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 2010,66(11):1531-1532.
doi: 10.1107/S1744309110037759 pmid: 3001667744104202110241198099570
[25] Achour B, Barber J . The activities of Achromobacter lysyl endopeptidase and Lysobacter lysyl endoproteinase as digestive enzymes for quantitative proteomics. Rapid Communications in Mass Spectrometry, 2013,27(14):1669-1672.
doi: 10.1002/rcm.6612 pmid: 23765612
[26] Guo Z G, Cheng J, Sun H D , et al. A qualitative and quantitative evaluation of the peptide characteristics of microwave- and ultrasound-assisted digestion in discovery and targeted proteomic analyses. Rapid Communications in Mass Spectrometry, 2017,31(16):1353-1362.
doi: 10.1002/rcm.7913 pmid: 28557149
[27] Paulo J A, Mancias J D, Gygi S P . Proteome-wide protein expression profiling across five pancreatic cell lines. Pancreas, 2017,46(5):690-698.
doi: 10.1097/MPA.0000000000000800 pmid: 28375945
[28] Kishimoto T, Kondo J, Takai I T , et al. Accurate mass comparison coupled with two endopeptidases enables identification of protein termini. Proteomics, 2011,11(3):485-489.
doi: 10.1002/pmic.201000537 pmid: 21268277
[29] Guan X, Brownstein N C, Young N L , et al. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry for peptide de novo amino acid sequencing for a seven-protein mixture by paired single-residue transposed Lys-N and Lys-C digestion. Rapid Communications in Mass Spectrometry, 2017,31(2):207-217.
doi: 10.1002/rcm.v31.2
[30] Raijmakers R, Neerincx P, Mohammed S , et al. Cleavage specificities of the brother and sister proteases Lys-C and Lys-N. Chemical Communications (Cambridge,England), 2010,46(46):8827-8829.
doi: 10.1039/c0cc02523b pmid: 20953479
[31] Brownstein N C, Guan X, Mao Y , et al. Paired single residue-transposed Lys-N and Lys-C digestions for label-free identification of N-terminal and C-terminal MS/MS peptide product ions: ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry for peptide de novo sequencing. Rapid Communications in Mass Spectrometry, 2015,29(7):659-666.
doi: 10.1002/rcm.7137
[32] Tofteng A P, Jensen K J , Sch?ffer L,et al. Total synthesis of desB30 insulin analogues by biomimetic folding of single-chain precursors. A European Journal of Chemical Biology, 2008,9(18):2989-2996.
doi: 10.1002/cbic.200800430 pmid: 19035371
[33] Maiorino M I, Petrizzo M, Capuano A , et al. The development of new basal insulins:is there any clinical advantage with their use in type 2 diabetes. Expert Opinion on Biological Therapy. 2014,14(6):799-808.
doi: 10.1517/14712598.2014.895812 pmid: 24673155
[34] 夏晶 . 一种甘精胰岛素及其类似物的制备方法: 中国,CN 102816785 A, 2012-12-12. 一种甘精胰岛素及其类似物的制备方法: 中国,CN 102816785 A,2012-12-12. .
Xia J. A Process for Preparation of Insulin Glargine and Analogues: China,CN 102816785 A, 2012-12-12. A Process for Preparation of Insulin Glargine and Analogues: China,CN 102816785 A,2012-12-12. .
[35] Partha H, Srikanth G S, Suma S , et al. A Process for Preparation of Insulin Compounds: International,WO2010016069, 2010-02-11. A Process for Preparation of Insulin Compounds: International,WO2010016069,2010-02-11. .
[36] Cao H, Deterding L J, Blackshear P J . Identification of a major phosphopeptide in human tristetraprolin by phosphopeptide mapping and mass spectrometry. Public Library of Science One, 2014,9(7):e100977.
doi: 10.1371/journal.pone.0100977 pmid: 4091943
[37] Imamura H, Sugiyama N, Wakabayashi M , et al. Large-scale identification of phosphorylation sites for profiling protein kinase selectivity. Journal of Proteome Research, 2014,13(7):3410-3419.
doi: 10.1021/pr500319y pmid: 24869485
[38] Cheng Y, Chen Y, Yu C . Fast and efficient non-reduced Lys-C digest using pressure cycling technology for antibody disulfide mapping by LC-MS. Journal of Pharmaceutical and Biomedical Analysis, 2016,129:203-209.
doi: 10.1016/j.jpba.2016.07.002 pmid: 27429370
[39] Du Y, Wang F, May K , et al. LC-MS analysis of glycopeptides of recombinant monoclonal antibodies by a rapid digestion procedure. Journal of Chromatography B, 2012,907:87-93.
doi: 10.1016/j.jchromb.2012.09.004 pmid: 23036907
[40] 宋智心, 田恩冰, 马怀安 , 等. 探讨Lys-C胰蛋白酶对于质谱法测定糖化血红蛋白的应用价值. 国际检验医学杂志, 2013,34(3):257-259.
doi: 10.3969/j.issn.1673-4130.2013.03.001
Song Z X, Tian E B, Ma H A , et al. Application value of Lys-C trypsin for the detection of HbA 1c by using mass spectrometric method. International Journal of Laboratory Medicine, 2013,34(3):257-259.
doi: 10.3969/j.issn.1673-4130.2013.03.001
[1] 陈开通,郑文隆,杨立荣,徐刚,吴坚平. 氨基树脂固定化L-苏氨酸醛缩酶及其应用*[J]. 中国生物工程杂志, 2021, 41(9): 55-63.
[2] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[3] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[4] 董雪迎,梁凯,叶克应,周策凡,唐景峰. 受体酪氨酸激酶对自噬的调控及其研究进展*[J]. 中国生物工程杂志, 2021, 41(5): 72-78.
[5] 陶守松,任广明,尹荣华,杨晓明,马文兵,葛志强. 敲低去泛素化酶USP13抑制K562细胞的增殖*[J]. 中国生物工程杂志, 2021, 41(5): 1-7.
[6] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[7] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[8] 玄美娟,张晓云,高莹,高丽影,吴佳婧,马梅,王艳梅,寇航,路福平,黎明. 大肠杆菌糖酵解途径和三羧酸循环启动子的表征及其应用 *[J]. 中国生物工程杂志, 2020, 40(6): 20-30.
[9] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[10] 苏永君,胡蝶,胡博淳,李闯,文正,章晨,邬敏辰. 定点突变提高环氧化物水解酶AuEH2催化对甲基苯基缩水甘油醚的对映选择性*[J]. 中国生物工程杂志, 2020, 40(3): 88-95.
[11] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[12] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[13] 朱梦露,王雪雨,刘鑫,路福平,孙登岳,秦慧民. 一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2019, 39(12): 24-34.
[14] 段李梅,杨锦潇,刘佳渝,郑永波,吴小候,罗春丽. shPLCε通过YAP抑制前列腺癌细胞的丝氨酸/甘氨酸代谢和增殖 *[J]. 中国生物工程杂志, 2019, 39(11): 1-12.
[15] 张颖,王莹,杨立荣,吴坚平. DA-F127水凝胶包埋固定化含腈水合酶细胞[J]. 中国生物工程杂志, 2019, 39(11): 70-77.