Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (12): 82-90    DOI: 10.13523/j.cb.20181211
综述     
压电式微喷技术在细胞打印领域的应用*
孙怀远1,**(),宋晓康2,廖跃华1,李晓欧1
1 上海健康医学院医疗器械学院 上海 201318
2 上海理工大学医疗器械与食品学院 上海 200093
The Application of Piezoelectric Micro-jetting Technology in the Field of Cell Bioprinting
SUN Huai-yuan1,**(),SONG Xiao-kang2,LIAO Yue-hua1,LI Xiao-ou1
1 Medical Instrument College, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China;
2 College of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
 全文: PDF(1119 KB)   HTML
摘要:

细胞获取和培养的过程是组织工程构建的重要环节;3D生物打印技术可以支撑组织工程的发展。通过“声波”使微量流体在惯性力和流体粘性力相互作用下实现脉冲流动的压电式微喷技术应用于细胞打印领域属于新兴工艺,具有精度高、效率高、成本低等特征。在介绍压电式微喷技术系统和原理基础上,分析了压电驱动方式、压电参数、脉冲驱动电压波形、生物细胞油墨对细胞打印的影响;给出了压电式微喷技术在高存活率细胞获取、高效率构建细胞三维组织方面的应用研究案例;总结了其在细胞打印领域的应用现状,并指出研究方向及意义。

关键词: 微喷技术细胞打印组织工程    
Abstract:

The process of cell acquisition and culture is an important part of tissue engineering construction. Three-dimensional bioprinting technology can support the development of tissue engineering. Piezoelectric micro-jetting realize pulsating flow of trace fluid under the interaction of the inertial force and fluid viscous force by “sound wave”, its application in the field of cell bioprinting belongs to the emerging technology, and it has the characteristics of high precision, high efficiency as well as low cost. Based on the introduction of micro-jetting technology system and principle, the effects of piezoelectric drive mode, piezoelectric parameters, pulse drive voltage waveform and bio-cell ink on cell bioprinting were analyzed, the cases studied of piezoelectric micro-jetting technology in high livability cell acquisition and efficient construction of cell three-dimensional tissue were provided, its application status in the field of cell bioprinting and research direction as well as significance were summarized.

Key words: Micro-jetting technology    Cell bioprinting    Tissue Engineering
收稿日期: 2018-07-30 出版日期: 2019-01-10
ZTFLH:  Q819  
基金资助: *上海市生物医学工程学科建设项目(E1-2601-17-201002)
通讯作者: 孙怀远     E-mail: shy62123@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙怀远
宋晓康
廖跃华
李晓欧

引用本文:

孙怀远,宋晓康,廖跃华,李晓欧. 压电式微喷技术在细胞打印领域的应用*[J]. 中国生物工程杂志, 2018, 38(12): 82-90.

SUN Huai-yuan,SONG Xiao-kang,LIAO Yue-hua,LI Xiao-ou. The Application of Piezoelectric Micro-jetting Technology in the Field of Cell Bioprinting. China Biotechnology, 2018, 38(12): 82-90.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20181211        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I12/82

图1  压电式微喷打印系统原理图
图2  压电喷头示意图
图3  压电驱动方式对比
图4  双极梯形波驱动电压
生物油墨打印细胞研究目的实验结果参考文献
聚乙烯吡咯烷成纤维细胞聚合物浓度对Z值和细胞打印稳定性的影响。通过改变聚合物浓度调节Z值可以提高细胞打印稳定性和细胞存活率。[16]
海藻酸钠和聚苯乙烯混合液成纤维细胞生物油墨浓度对打印细胞存活率的影响。生物油墨浓度降低,打印细胞存活率相应提高。[32]
聚蔗糖和磷酸盐缓冲溶液乳腺癌细胞生物油墨流变特性对细胞打印过程的影响。改善生物油墨流变性可以降低细胞聚集、沉积现象。[33-36]
无内毒素低酰基结冷胶悬浮液小鼠成肌细胞生物油墨流变特性对打印细胞存活率的影响。生物油墨流变性好,则打印的细胞存活率高。[37]
表1  几种生物油墨对细胞打印的影响
细胞种类生物油墨打印喷头细胞存活率参考文献
酵母细胞酵母-麦芽汁溶液F181010压电打印头96%[12]
鼠成纤维细胞胎牛血清-抗生素/抗真菌溶液30μm压电喷头94.4%[14]
新生儿包皮成纤维细胞聚乙烯吡咯烷酮基混合液50μm压电喷头95%[16]
小鼠成肌细胞无内毒素低酰基结冷胶悬浮液XAAR-126压电喷墨打印头95%[37]
仓鼠卵巢细胞磷酸盐缓冲液改进的HP51626a压电打印头90%[41]
骨髓基质细胞纤维蛋白原和凝血酶悬浮液50μm压电喷头98%[43]
表2  几种细胞压电式打印情况
图5  打印细胞冷冻贮藏
图6  癌细胞组织阵列
图7  3D血管结构
图8  细胞储存丝巢阵列
[1] 金灿,陈振琦.应用3D打印技术制作组织工程支架:修复骨缺损的研究回顾.中国组织工程研究,2017,21(10):1611-1616.
Jin C,Chen Z Q.Tissue-engineered scaffold preparation using three-dimensional printing technology:a retrospective study on bone repair.Chinese Journal of Tissue Engineering Research,2017,21(10):1611-1616.
[2] 曹雪飞,宋朋杰,乔永杰,等.3D打印骨组织工程支架的研究与应用.中国组织工程研究,2015,19(25):4076-4080.
Cao X F,Song P J,Qiao Y J,et al.3D printing of bone tissue engineering scaffolds.Chinese Journal of Tissue Engineering Research,2015,19(25):4076-4080.
[3] 王雪欣,张明谏,李小兵,等.3D生物打印在组织/器官类似物制造领域的应用.中国组织工程研究,2018,22(10):1611-1617.
Wang X X,Zhang M J,Li X B,et al.Three-dimensional bioprinting of tissue/organ analogues:a review on techniques,materials and processes.Chinese Journal of Tissue Engineering Research,2018,22(10):1611-1617.
[4] 徐弢. 生物3D 打印在神经科学领域的最新进展.中华神经创伤外科电子杂志,2018,4(2):65-67.
Xu T.The latest advances of biological 3D printing in the field of neuroscience.Chin J Neurotrauma Surg (Electronic Edition),2018,4(2):65-67.
[5] 韩倩宜,李淑萍,肖雄夫,等.3D打印技术在植入式医疗器械中的应用.科技导报,2017,35(2):72-79.
Han Q Y,Li S P,Xiao X F,et al.3D Printing:The application in medicine devices.Science &Technology Review,2017,35(2):72-79.
[6] 杨润怀,陈月明,马长望,等.生物细胞三维打印技术与材料研究进展.生物医学工程学杂志,2017,34(2):320-324.
Yang R H,Chen Y M,Ma C W,et al.Research progress on the technique and materials for three-dimensional bio-printing.Journal of Biomedical Engineering,2017,34(2):320-324.
[7] Gu Q,Hao J,Lu Y J,et al.Three-dimensional bio-printing.Sci China Life Sci,2015,58(5): 411-419.
[8] 魏玉雪,刘晓秋,李迪,等.3D打印技术在细胞打印方面的应用与发展.海南医学,2017,28(5): 801-804.
Wei Y X,Liu X Q,Li D,et al.Application and development of 3D printing technology in cell printing.Hainan Med J,2017,28(5):801-804.
[9] 周丽宏,陈自强,黄国友,等.细胞打印技术及应用.中国生物工程杂志,2010,30(12):95-104.
Zhou L H,Chen Z Q,Huang G Y,et al.The application of cell bioprinting . China Biotechnology,2010,30(12):95-104.
[10] Sivaraman A,Leach J K,Townsend S,et al.Am icroscale in vitro physiolog icalmodel of the liver:predictive screen s for drug metabolism and enzyme induction.Current Drug Metabolism,2005,6(6): 569-592.
doi: 10.2174/138920005774832632 pmid: 16379670
[11] 叶青,王文军,鱼泳,等.3D生物打印在再生医学中的应用及展望.医疗卫生装备,2016,37(10):121-123.
Ye Q,Wang W J,Yu Y,et al.Application and prospects of 3D bioprintnig in regenerative medicine . Chinese Medical Equipment Journal,2016,37(10):121-123.
[12] 蔡仁烨. 细胞打印过程中的细胞受损分析.西安:西安电子科技大学,2013.
Cai R Y.Cell damage analysis in cell printing. Xi’an:Xidian University,2013.
[13] Xu C,Zhang M,Huang Y,et al.Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink.Langmuir,2014,30(30) :9130-9138.
doi: 10.1021/la501430x pmid: 25005170
[14] Kim Y K,Park J A,Yoon W H,et al.Drop-on-demand inkjet-based cell printing with 30-μm nozzle diameter for cell-level accuracy.Biomicrofluidics,2016,10 (6):064110.1-064110.11.
doi: 10.1063/1.4968845 pmid: 27990212
[15] Kim J D,Choi J S,Kim B S,et al.Piezoelectric inkjet printing of polymers:stem cell patterning on polymer substrates.Polymer(Guildf),2010,(51):2147-2154.
doi: 10.1016/j.polymer.2010.03.038
[16] Ng W L,Yeong W Y,Naing M W,et al.Polyvinylpyrrolidone-based bio-ink improves cell viability and homogeneity during drop-on-demand printing.Materials,2017,10(2):190.1-190.12.
doi: 10.3390/ma10020190 pmid: 5459162
[17] Lee J H,Gu Y,Wang H,et al.Microfluidic 3D bone tissue model for high-throughput evaluation of wound-healing and infection-preventing biomaterials .Biomaterials,2012 ,33(4) :999-1006.
doi: 10.1016/j.biomaterials.2011.10.036 pmid: 22061488
[18] Zhang J,Chen F,He Z,et al.A novel approach for precisely controlled multiple cell patterning in microfluidic chips by inkjet printing and the detection of drug metabolism and diffusion.Analyst,2016,141(10) :2940.
doi: 10.1039/c6an00395h pmid: 27045202
[19] The R,Yamaguchi S.Piezoelectric inkjet-based single-cells printing by image processing for high efficiency and automatic cell printing//17th International Conference on Miniaturized,2013:1656-1658.
[20] Yamaguchi S,Ueno A,Akiyama Y,et al.Cell patterning through inkjet printing of one cell per droplet.Biofabrication,2012,4(4):045005.
doi: 10.1088/1758-5082/4/4/045005 pmid: 23075800
[21] Kang W S,Koh J H.(1-x)Bi0.5Na0.5TiO3-TiO(3)lead-free piezoelectric ceramics for energy-harvesting applications.Materials Science,2015,(5):2057-2064.
doi: 10.1016/j.jeurceramsoc.2014.12.036
[22] Zhang M,Song H T,Xu C X.Study of living cell distribution during inkjet printing of bioink//Proceedings of the asme international manufacturing science and engineering conference 2017.Los Angeles,USA:MSEC,2017:2921.
[23] Saunders R E,Gough J E,Derby B.Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing.Biomaterials,2008,(29):193-203.
doi: 10.1016/j.biomaterials.2007.09.032 pmid: 17936351
[24] Gan H Y,Shan X C,Eriksson T,et al.Reduction of droplet volume by controlling actuating waveforms in inkjet printing for micro-pattern formation.Journal of Micromechanics and Microengineering,2009,(19):055010.1-055010.8.
doi: 10.1088/0960-1317/19/5/055010
[25] Kwon K S,Kim W.A waveform design method for highspeed inkjet printing based on self-sensing measurement.Sensors and Actuators,2007,(4):75-83.
doi: 10.1016/j.sna.2007.06.010
[26] Lee Y I,Kwon Y T,Lee K J,et al.A novel method for fine patterning by piezoelectrically induced pressure adjustment of inkjet printing.Electronic Materials,2015,44(8):2608-2614.
doi: 10.1007/s11664-015-3675-y
[27] 夏京瑞,周奕华,钱俊,等.基于细胞打印的压电式喷墨头研究进展.包装工程,2016,37(9):129-133,155.
Xia J R,Zhou Y H,Qian J,et al.Research progress of piezoelectric inkjet head based on cell printing.Packaging Engineering,2016,37(9):129-133,155.
[28] Fromm J E.Numerical-calculation of the fluid-dynamics of drop-on-demand jets.IBMJ Res Dev,1984,28(3):322-333.
doi: 10.1147/rd.283.0322
[29] Reis N,Ainsley C,Derby B.Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors.Journal of Applied Physics,2005,97(9) :815.
doi: 10.1063/1.1888026
[30] Derby B.Inkjet printing of functional and structural materials:fluid property requirements,feature stability,and resolution.Annu Rev Mater Res,2010,(40):395-414.
doi: 10.1146/annurev-matsci-070909-104502
[31] Jang D,Kim D,Moon J.Influence of fluid physical properties on ink-jet printability.Langmuir,2009,25(5):2629-2635.
doi: 10.1021/la900059m pmid: 19437746
[32] Chahal D,Ahmadi A,Cheung K C.Improving piezoelectric cell printing accuracy and reliability through neutral buoyancy of suspensions.Biotechnology & Bioengineering,2012,109(11):2932-2940.
doi: 10.1002/bit.24562 pmid: 22627805
[33] Moon S,Ceyhan E,Gurkan U A,et al.Statistical Modeling of single target cell encapsulation.PLoS One,2011,(6):e21580.
doi: 10.1371/journal.pone.0021580 pmid: 21814548
[34] Liberski A R,Schubert U S.One cell-one well:A new approach to inkjet printing single cell microarrays.ACS Combinatorial Science,2010,(13);190-195.
doi: 10.1021/co100061c pmid: 21395345
[35] Cheng E,Yu H,Ahmadi A,et al.Rheological manipulation for improved reliability in inkjet printing of living cells//2016 IEEE 29th International Conference on Micro Electro Mechanical Systems.Shanghai,China:IEEE,2016:784-787.
[36] Cheng E,Ahmadi A,Cheung K C.Investifation of the hydrodynamics of suspended cells for reliable inkjet cell printing /ASME 2014 12th International Conference on Nanochannels,Microchannels,and Minichannels.Chicago,USA:Asme International Conference on Nanochannels 2014:V001T03A010.
[37] Ferris C,Gilmore K,Beirne S,et al.Bio-ink for on-demand printing of living cells.Biomaterials Science,2013,1(2) :224-230.
doi: 10.1039/c2bm00114d
[38] Cui X,Dean D,Ruggeri M.Cell damage evaluation of thermal inkjet printed chinese hamster ovary cells.Biotechnology & Bioengineering,2010,106(6):963-969.
doi: 10.1002/bit.22762 pmid: 20589673
[39] Ozbolat I,Yu Y.Bioprinting toward organ fabrication:Challenges and future trends.IEEE Transactions on Biomedical Engineering,2013,60(3) :691-699.
doi: 10.1109/TBME.2013.2243912 pmid: 23372076
[40] Ringeisen B R,Pirlo R K,Wu P K,et al.Cell and organ printing turns 15:Diverse research to commercial transtitions.MRS Bull,2013,(38):834-843.
[41] Xu T,Joyce J,Cassie G,et al.Inkjet printing of viable mammalian cells.Biomaterials,2005,26(1):93-99.
doi: 10.1016/j.biomaterials.2004.04.011 pmid: 15193884
[42] Lorber B,Hsiao W K,Hutchings I M,et al.Adult rat retinal ganglion cells and glia can be printed by piezoelectric injet printing.Biofabrication,2014,6(1):152-163.
doi: 10.1088/1758-5082/6/1/015001 pmid: 24345926
[43] Detsch R,Blob S,Zehnder T,et al.Evaluation of cell inkjet printing technique for biofabrication.BioNanoMat,2016,17(3):185-191.
[44] Zhang X,Catalano P N,Gurkan U A,et al.Emerging technologies in medical applications of minimum volume vitrification.Nanomedicine,2011,(6):1115-1129.
doi: 10.2217/nnm.11.71 pmid: 3193162
[45] Yong K W,Safwani W K,Xu F,et al.Assessment of tumourigenic potential in long-term cryopreserved human adipose-derived stem cells.Journal of Tissue Engineering and Regenerative Medicine,2016,11(8) :2217-2226.
doi: 10.1002/term.2120 pmid: 26756982
[46] Dou R,Saunders R E,Mohamet L,et al.High through put cryopreservation of cells by rapid freezing of sub-μl drops using inkjet printing-cryoprinting.Lab Chip,2015,(15):3503-3513.
[47] Dimasi J A,Feldman L,Seckler A,et al.Trends in risks associated with new drug development:Success rates for investigational drugs.Clin Pharmacol Ther,2010,87(3) :272.
doi: 10.1038/clpt.2009.295 pmid: 20130567
[48] Hay M,Thomas D W,Craighead J L,et al.Clinical development success rates for investigational drugs.Nature Biotechnology,2014 ,32(1) :40-51.
doi: 10.1038/nbt.2786 pmid: 24406927
[49] Park T M,Kang D,Jang I,et al.Fabrication of in vitro cancer microtissue array on fibroblast-layered nanofibrous membrane by inkjet printing.International Journal of Molecular Sciences,2017,18(11):2348.
doi: 10.3390/ijms18112348 pmid: 29112150
[50] Cohen D L.Direct freeform fabrication of seeded hydrogels in arbitrary geometries.Tissue Engineering,2006,(12):1325-1335.
[51] Jakab K.Three-dimensional tissue constructs built by bioprinting.Biorheology,2006,(43):509-513.
doi: 10.1016/S0022-3093(00)00207-6 pmid: 16912422
[52] Ozbolat I T,Hospodiuk M.Current advances and future perspectives in extrusion-based bioprinting.Biomaterials,2016,(76):321-343.
doi: 10.1016/j.biomaterials.2015.10.076 pmid: 26561931
[53] Visser J.Biofabrication of multi-material anatomically shaped tissue constructs.Biofabrication,2013,(5):035007.
[54] Faulkner-jones A,Fyfe C,Cornelissen D J,et al.Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for generation of mini-livers in 3D.Biofabrication,2015,7(4):044102.
doi: 10.1088/1758-5090/7/4/044102 pmid: 26486521
[55] Zhang J,Hartmann B,Siegel J,et al.Sacrificial-layer free transfer of mammalian cells using near infrared femtosecond laser pulses.PLoS ONE,2018,13(5):e0195479.
doi: 10.1371/journal.pone.0195479 pmid: 29718923
[56] Koch L,Deiwick A,Chichkov B.Laser-based 3D cell printing for tissue engineering.BioNanoMaterials,2014,(15):71-78.
[57] Xiong R,Zhang Z,Chai W,et al.Study of gelatin as an effective energy absorbing layer for laser bioprinting.Biofabrication,2017,(9):24103-24117.
doi: 10.1088/1758-5090/aa74f2 pmid: 28597844
[58] Huang T Q.3D printing of biomimetic microstructures for cancer cell migration.Biomed Microdevices,2014,(16):127-132.
doi: 10.1007/s10544-013-9812-6 pmid: 3945947
[59] Cui X,Gao G,Qiu Y.Accelerated myotube formation using bioprinting technology for biosensor applications.Biotechnology Letters,2013,35(3):315-321.
doi: 10.1007/s10529-012-1087-0 pmid: 23160742
[60] Christensen K,Xu C,Chai W,et al.Freeform inkjet printing of cellular structures with bifurcations.Biotechnology & Bioengineering,2015,(112):1047-1055.
doi: 10.1002/bit.25501 pmid: 25421556
[61] Suntivich R,Drachuk I,Calabrese R.Inkjet printing of silk nest arrays for cell hosting.Biomacromolecules,2014,15(4):1428-1435.
doi: 10.1021/bm500027c pmid: 24605757
[62] Owens C M,Marga F,Forgacs G.Biofabrication and testing of a fully cellular nerve graft.Biofabrication,2013,5(4):380-387.
doi: 10.1088/1758-5082/5/4/045007 pmid: 24192236
[63] Lee V,Singh G,Trasatti J P,et al.Design and fabrication of human skin by three-dimensional bioprinting.Tissue Eng Part C Methods,2014,20(6):473-484.
[64] Xu T,Binder K W,Albanna M Z,et al.Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.Biofabrication,2013,5(1):1-10.
[1] 朱帅,金明杰,杨树林. 3D生物打印在软骨修复中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 65-71.
[2] 宋标标,顾奇. 同轴打印小直径组织工程血管*[J]. 中国生物工程杂志, 2021, 41(10): 42-51.
[3] 余幸鸽,林开利. 基于天然水凝胶的生物材料在骨组织工程中的应用*[J]. 中国生物工程杂志, 2020, 40(5): 69-77.
[4] 王元斗,宿烽,李速明. 光交联水凝胶在组织工程中的研究进展[J]. 中国生物工程杂志, 2020, 40(4): 91-96.
[5] 严格,乔韡华,曹红,史嘉玮,董念国. 聚多巴胺的表面修饰功能在组织工程的应用进展*[J]. 中国生物工程杂志, 2020, 40(12): 75-81.
[6] 武慧蓉,温朝辉. 壳聚糖在神经组织工程中的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 73-77.
[7] 康肸,邓爱鹏,杨树林. 壳聚糖基温敏水凝胶的研究进展[J]. 中国生物工程杂志, 2018, 38(5): 79-84.
[8] 郗来顺,云鹏,王元斗,张冠宏,邢泉生,陈阳生,宿烽. 形状记忆聚合物在组织工程中的应用 *[J]. 中国生物工程杂志, 2018, 38(12): 76-81.
[9] 李大为, 何进, 何凤利, 刘雅丽, 邓旭东, 叶雅静, 尹大川. 丝素蛋白/壳聚糖复合材料在组织工程中应用的研究进展[J]. 中国生物工程杂志, 2017, 37(10): 111-117.
[10] 罗思施, 汤顺清. 琼脂糖在组织工程中的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 68-74.
[11] 王佃亮. 组织器官三维构建及原位组织工程概念——组织工程连载之四[J]. 中国生物工程杂志, 2014, 34(8): 112-116.
[12] 王佃亮. 种子细胞——组织工程连载之三[J]. 中国生物工程杂志, 2014, 34(7): 108-113.
[13] 王佃亮. 组织工程的诞生与发展——组织工程 连载之一[J]. 中国生物工程杂志, 2014, 34(5): 122-129.
[14] 张志强, 黄向华, 赵林远. 微环境对细胞的影响以及仿生学在组织工程支架中的应用[J]. 中国生物工程杂志, 2014, 34(4): 101-109.
[15] 王佃亮. 组织工程产品的种类及应用——组织工程连载之六[J]. 中国生物工程杂志, 2014, 34(11): 125-129.