Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (8): 69-75    DOI: 10.13523/j.cb.20180809
综述     
高通量微型生物反应器的研究进展
郭玉蕾1,唐亮2,孙瑞强2,李尤2,陈依军1,*()
1. 中国药科大学生命科学与技术学院 南京 210009
2. 上海药明生物技术有限公司 上海 200131
High-Throughput Micro Bioreactor Development for Biopharmaceuticals
Yu-lei GUO1,Liang TANG2,Rui-qiang SUN2,You LI2,Yi-jun CHEN1,*()
1. College of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
2. Wuxi Biologics, Shanghai 200131, China
 全文: PDF(798 KB)   HTML
摘要:

近年来,哺乳动物细胞培养技术发展迅猛,基于此技术的生物制药行业更是异军突起。在激烈的生物药市场竞争中,缩短研发时间和降低研发成本是制胜的关键。与传统的生物反应器相比,高通量微型生物反应器具有操作简单、运行通量高、实验重复性好等优点,可大大缩短研发周期,降低人力、物力成本,因此成为了生物制药行业最新的研究热点之一。目前,已成功应用于生物药物研发的微型生物反应器有Simcell TM、Ambr 15 TM、Ambr 250 TM等,分别适用于工艺开发中的不同阶段。以上述三种微型生物反应器为例,介绍高通量微型反应器在哺乳动物细胞培养工艺开发中的研究现状及发展前景。

关键词: 哺乳动物细胞细胞培养生物反应器微型反应器    
Abstract:

The development of biologics based on mammalian cell culture technologies has increasingly rapid advances for the pharmaceutical markets in the recent years. Economic concerns and time constraint as the critical factors and the driving force have accelerated bioprocess development of delivery of new biopharmaceutical drugs to market. Dramatically, advancement of semi-high-throughput micro-bioreactors in bioprocess development has shown a significant alternative for the conventional approaches due to automation, increased capability of throughput, and excellent parallel level compared to costly and laborious bench-top bioreactors. There are several commercially available micro scale bioreactors, such as Simcell TM, Ambr 15 TM and Ambr 250 TM, being applied in different stages of cell culture development to enhance throughput. This research reviewed and summarized the strengths and challenges of high-throughput bioreactors for the mammalian cells culture, showing the potential as scale-down models for process development and further improvement in the future.

Key words: Mammalian cell    Cell culture process development    Bench-top bioreactor    Micro-bioreactor
收稿日期: 2018-03-13 出版日期: 2018-09-11
ZTFLH:  Q81  
通讯作者: 陈依军     E-mail: yjchen@cpu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭玉蕾
唐亮
孙瑞强
李尤
陈依军

引用本文:

郭玉蕾,唐亮,孙瑞强,李尤,陈依军. 高通量微型生物反应器的研究进展[J]. 中国生物工程杂志, 2018, 38(8): 69-75.

Yu-lei GUO,Liang TANG,Rui-qiang SUN,You LI,Yi-jun CHEN. High-Throughput Micro Bioreactor Development for Biopharmaceuticals. China Biotechnology, 2018, 38(8): 69-75.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180809        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I8/69

图1  生物药物研发及培养工艺流程
Items Bench-top B
ioreactors (1~3L)
Shake flasks SimcellTM Ambr 15TM Ambr 250TM
Mode Manual Manual Automated Automated Automated
Quantities* 8 24 1260 48 24
Volume 1~3L 50~1000ml 7000ml 10~15ml 200~250ml
Capital cost Large footprint
Very high capital
Moderate footprint
Low capital
Large footprint Very
high capital
Low footprint
Moderate capital
Low footprint
Moderate capital
Temperature control Individual Incubator control Controlled in units
of 252
Controlled in units
of 12
Individual
pH control Real-time NA Periodic Real-time Real-time
DO control Real-time NA Periodic Real-time Real-time
Gassing Overlay + Sparger Surface Surface Sparger Overlay + Sparger
Oxygen KLa 2~10h-1 NA 7h-1 2.6~6.0h-1 2.5~8.5h-1
Agitation 200~300r/min 100~125r/min 20r/min 300~1500r/min 200~800r/min
P/V values 30~70W/m3 40W/m3 NA 3.9~419W/m3 10~445W/m3
Agitator blade Three-blade
propeller
NA NA Two-blade
propeller
Three-blade
propeller
Mixing time 10~100s 2~5s 20s 5~25s 5~40s
表1  高通量微型反应器与传统生物反应器的比较[5,17,22]
图2  SimcellTM构造示意图[10]
图3  Ambr 15TM系统构造 反应器 (a) 工作站 (b)
图4  Ambr 250TM系统构造 反应器 (a) 工作站 (b)
[1] Reichert J . Antibodies to watch in 2015. MAbs, 2015,7(1):1-8.
[2] EvaluatePharma. World preview 2017, Outlook to 2022. 10 th ed , 2017: 1-41.
[3] Ecker D M, Jones S D, Levine H L . The therapeutic monoclonal antibody market. Mabs, 2015,7(1):9-14.
doi: 10.4161/19420862.2015.989042 pmid: 4622599
[4] Hay M, Thomas D W, Craighead J L , et al. Clinical development success rates for investigational drugs. Nature Biotechnology, 2014,32(1):40-51.
doi: 10.1038/nbt.2786
[5] Huang Y M, Kwiatkowski C . The role of high-throughput minibioreactors in process development and process optimization for mammalian cell culture. Pharmaceutical Bioprocess, 2015,3(6):397-410.
doi: 10.4155/pbp.15.22
[6] Legmann R, Schreyer H, Combs R , et al. A predictive high throughput scale-down model of mAb production in CHO cells. Biotechnology Bioengineering, 2009,104(6):1107-1120.
doi: 10.1002/bit.v104:6
[7] Lamping S, Zhang H, Allen B , et al. Design of a prototype miniature bioreactor for high throughput automated processing. Chemical Engineering Science, 2003,58(3):747-758.
doi: 10.1016/S0009-2509(02)00604-8
[8] Isett K, George H, Herber W , et al. Twenty-four well plate miniature bioreactor high throughput system: assessment for microbial cultivation. Biotechnology Bioengineering, 2010,98(5):1017-1028.
[9] Chen A, Chitta R, Chang D , et al. Twenty-four well plate miniature bioreactor system as a scale-down model for cell culture process development. Biotechnology Bioengineering, 2010,102(1):148-160.
[10] Legmann R, Schreyer H B, Russo A P , et al. A predictive high-throughput scale-down model of monoclonal antibody production in CHO cells. Biotechnology and Bioengineering, 2009,104(6):1107-1120.
doi: 10.1002/bit.v104:6
[11] Amanullah A, Otero J M, Mikola M , et al. Novel micro-bioreactor high throughput technology for cell culture process development: reproducibility and scalability assessment of fed-batch CHO cultures. Biotechnology Bioengineering, 2010,106(1):57-67.
[12] Lewis G, Lugg R, Lee K , et al. Novel automated microscale bioreactor technology: a qualitative and quantitative mimic for early process development. Bioprocess Journal, 2010,9(1):22-25.
doi: 10.12665/issn.1538-8786
[13] Hsu W T, Aulakh R P S, Traul D L , et al. Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors. Cytotechnology, 2012,64(6):667-678.
doi: 10.1007/s10616-012-9446-1
[14] Rameez S, Mostafa S S, Miller C , et al. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control. Biotechnology Progress, 2014,30(3):718-727.
doi: 10.1002/btpr.1874
[15] Bareither R, Bargh N, Oakeshott R , et al. Automated disposable small-scale bioreactor for high-throughput process development: implementation of the 24 bioreactor array. Pharmaceutical Bioprocessing, 2015,3(3):185-197.
doi: 10.4155/pbp.14.64
[16] Bareither R, Bargh N, Oakeshott R , et al. Automated disposable small scale reactor for high throughput bioprocess development: a proof of concept study. Biotechnology and Bioengineering, 2013,110(12):3126-3138.
doi: 10.1002/bit.v110.12
[17] Xu P, Clark C, Scott C . Characterization of TAP Ambr 250 disposable bioreactors, as a reliable scale down model for biologics process development. Biotechnology Progress, 2017,33(2):478-489.
doi: 10.1002/btpr.v33.2
[18] Tai M, Ly A, Leung I , et al. Efficient high-throughput biological process characterization: definitive screening design with the Ambr250 bioreactor system. Biotechnology Progress, 2013,31(5):1388-1395.
[19] Janakiraman V, Kwiatkowski C . Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development. Biotechnology Progress, 2015,31(6):1623-1632.
doi: 10.1002/btpr.2162
[20] Moses S, Manahan M, Ambrogelly A , et al. Assessment of AMBR TM as a model for high-throughput cell culture process development strategy . Advance Bioscience Biotechnology, 2012,3(7):918-927.
doi: 10.4236/abb.2012.37113
[21] Nienow A W, Rielly C D, Brosnan K , et al. The physical characterisation of a microscale parallel bioreactor platform with an industrial CHO cell line expressing an IgG4. Biochemical Engineering Journal, 2013,76(2):25-36.
doi: 10.1016/j.bej.2013.04.011
[22] Clarkson M P . The Ambr ® 15 cell culture user manual. TAP-9670-06-005 Issue 7. 30, 2016: 13-21.
[23] Rathore A . Implementation of quality by design (QbD) for biopharmaceutical products. Pharmaceutical Science Technology, 2010,64(6):495-496.
pmid: 21502059
[24] Cogdill R P, Drennen J K . Risk-based quality by design (QbD): A Taguchi perspective on the assessment of product quality, and the quantitative linkage of drug product parameters and clinical performance. Journal of Pharmaceutical Innovation, 2008,3(1):23-29.
doi: 10.1007/s12247-008-9025-3
[25] Goldrick S, Holmes W, Bond N J , et al. Advanced multivariate data analysis to determine the root cause of trisulfide bond formation in a novel antibody-peptide fusion. Biotechnology Bioengineering, 2017,114(10):2222-2234.
doi: 10.1002/bit.26339
[26] Karst D J, Scibona E, Villiger T K . Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors. Biotechnology Bioengineering, 2017,114(9):1978-1990.
doi: 10.1002/bit.v114.9
[27] Tescione L, Lambropoulos J, Paranandi M R , et al. Application of bioreactor design principles and multivariate analysis for development of cell culture scale down model. Biotechnology and Bioengineering, 2015,112(1):84-97.
doi: 10.1002/bit.25330
[28] Kwiatkowski C, Huang Y M, Kshirsagar R , et al. Traversing six logs in scale-down modeling: two case studies in developing a scale-down model for the advanced microscale bioreactor system from a 15,000L production bioreactor. 13 Aiche Meeting. San Francisco: 2013 AICHE Annual Meeting. 2013: 3-8.
[29] Kelly W, Veigne S, Li X , et al. Optimizing performance of semi-continuous cell culture in an ambr15 TM microbioreactor using dynamic flux balance modeling . Biotechnology Progress, 2017,34(2):420-431.
[30] Shukla A A, Rameez S, Wolfe L S , et al. High-throughput process development for biopharmaceuticals//Advances in Biochemical Engineering/Biotechnology. Berlin:Springer, 2017.
doi: 10.1007/10_2017_20 pmid: 29134461
[1] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[2] 靳露,周航,曹云,王振守,曹荣月. 高通量灌流培养模型在生物工艺开发中的应用研究[J]. 中国生物工程杂志, 2020, 40(8): 63-73.
[3] 梁振鑫,刘芳,张玮,刘庆友,李力. 抗p185 erb B2人鼠嵌合抗体ChAb26转基因小鼠乳腺生物反应器的制备与验证 *[J]. 中国生物工程杂志, 2019, 39(8): 40-51.
[4] 苏爽,金永杰,黄瑞晶,李剑,徐寒梅. 哺乳动物细胞灌流培养工艺研究进展[J]. 中国生物工程杂志, 2019, 39(3): 105-110.
[5] 李亚芳,赵颖慧,刘赛宝,王伟,曾为俊,王金泉,陈洪岩,孟庆文. 鸡OV启动子表达HA对禽流感病毒攻击提供完全保护 *[J]. 中国生物工程杂志, 2018, 38(7): 67-74.
[6] 孙静静,周伟伟,周雷鸣,赵巧辉,李桂林. 杂交瘤细胞体外大规模培养研究进展[J]. 中国生物工程杂志, 2018, 38(10): 82-89.
[7] 苏晓蕊, 李伟国, 王延辉, 高晓静, 闪伊红, 谭菲菲, 李向东, 田克恭. 重组杆状病毒细小VP2蛋白40L生物反应器放大工艺研究[J]. 中国生物工程杂志, 2017, 37(10): 60-64.
[8] 林优红, 程霞英, 严依雯, 梁宗锁, 杨宗岐. 衣藻叶绿体表达重组蛋白及表达优化策略[J]. 中国生物工程杂志, 2017, 37(10): 118-125.
[9] 刘婷婷, 梁梓强, 梁士可, 郭技星, 王方海. 利用生物工程技术生产蜘蛛丝的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 132-137.
[10] 赵绘存. 基于专利信息可视化的生物反应器发展态势分析[J]. 中国生物工程杂志, 2016, 36(1): 115-121.
[11] 张丹凤, 余自青, 吴锁伟, 饶力群, 万向元. 植物生物反应器在分子医药农业中的应用[J]. 中国生物工程杂志, 2016, 36(1): 86-94.
[12] 申斓, 周爱东, 吴小芹. 植物细胞培养生物反应器的种类特点及展望[J]. 中国生物工程杂志, 2015, 35(8): 109-115.
[13] 梁振鑫, 尹富强, 刘庆友, 李力. 转基因动物乳腺生物反应器相关技术及研究进展[J]. 中国生物工程杂志, 2015, 35(2): 92-98.
[14] 张斯敏, 高越, 方彧聃, 张金脉, 张敬之. 乳腺生物反应器特异高效表达载体的构建[J]. 中国生物工程杂志, 2014, 34(7): 49-55.
[15] 林美玲, 唐寅, 张明, 易小萍, 黄明志. 重组HSV-Ⅱ病毒疫苗的微载体悬浮培养生产工艺研究[J]. 中国生物工程杂志, 2014, 34(3): 68-78.