Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (12): 49-57    DOI: 10.13523/j.cb.2008119
技术与方法     
利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*
雷海英1,赵青松1,白凤麟1,宋慧芳1,王志军2,**()
1长治学院生物科学与技术系 长治 046011
2长治学院化学系 长治 046011
Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize
LEI Hai-ying1,ZHAO Qing-song1,BAI Feng-lin1,SONG Hui-fang1,WANG Zhi-jun2,**()
1 Faculty of Biology Sciences and Technology, Changzhi University, Changzhi 046011, China
2 Department of Chemistry, Changzhi University, Changzhi 046011, China
 全文: PDF(15406 KB)   HTML
摘要:

目的: 利用CRISPR/Cas9(clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) 系统构建玉米中心蛋白(Centrin)的表达载体,经转化后分析其对玉米生长发育的影响。方法: 针对ZmCen基因的第一个外显子设计sgRNA,将其连入pOMS01-Cas9-ZmCen-sgRNA表达载体,转化农杆菌GV3101后,侵染玉米自交系材料B104的愈伤组织,经继代、诱导、分化成苗,筛选出转基因后代。对T0代和T1代基因组DNA进行PCR验证、测序及表型分析。结果: 成功构建ZmCen的表达载体。侵染农杆菌后,PCR测序显示,T0 代和T1 代突变率分别为 20.13% 和 64.52%,其中T1 代的纯合缺失突变率为5%。序列分析表明,ZmCen基因的编辑靶点附近发生了碱基的替换、插入或缺失。经与野生型表型比对发现,ZmCen 突变体T1代植株出现发育缓慢且雄花序不完全发育表型,纯合突变体植株雄花序则完全不发育。结论: 通过 CRISPR/Cas9技术成功地对玉米ZmCen基因进行了编辑,ZmCen突变体的获得为玉米雄性器官发育相关基因的研究奠定了基础。

关键词: CRISPR/Cas9技术玉米ZmCen雄花序    
Abstract:

Objective: To construct a ZmCen gene expressing vector using CRISPR/Cas9 system and analyze its effect on growth and development in maize after transformation. Methods: A sgRNA in the first exon of ZmCen gene was designed targeting it. The sgRNA was inserted into the pOMS01-Cas9-ZmCen-sgRNA vector, and its transgenic lines B104 were obtained via Agrobacterium-mediated transformation, subcultured, induced and differentiated into seedlings. The T0 and T1 generations genomic DNA was amplified and analyzed, and the plants were phenotype comparison screening. Results: The ZmCen expressing vector was successfully constructed. The genomic DNA of T0 and T1 generations was detected by PCR and sequenced. The mutagenesis frequency for ZmCen was 20.13% and 64.52% in T0 and T1 transgenic lines, respectively. The frequency of homozygous deletion mutation was 5% in T1 transgenic lines. Sequence analysis showed that base substitutions, insertions, or deletions occurred near the editing target of the ZmCen gene. Compared with the wild-type phenotype, it was found that the T1 generation plants of ZmCen mutant showed incomplete male inflorescence phenotype, while the male inflorescence of homozygous mutant plants was sterility. Conclusion: The ZmCen gene was succeed editing by CRISPR/Cas9 technical in maize, and the successful construction of ZmCen mutants lays a foundation for the related-genes study of maize male organ development.

Key words: CRISPR/Cas9    Maize    ZmCen male inflorescence
收稿日期: 2020-08-11 出版日期: 2021-01-14
ZTFLH:  Q789  
基金资助: * 国家自然科学基金(21201024);山西省应用基础研究项目(201801D121065);山西省高校科技创新资助项目(201802106);山西省“1331工程”重点创新研究团队项目资助项目(2018018)
通讯作者: 王志军     E-mail: czxywzj@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
雷海英
赵青松
白凤麟
宋慧芳
王志军

引用本文:

雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.

LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize. China Biotechnology, 2020, 40(12): 49-57.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2008119        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I12/49

引物名称 引物(5'→3') 用途
T-F GGCGAGGCCTAGGGCTCGCCCTCATGG 合成sgRNA
T-R CCATGAGGGCGAGCCCTAGGCCTCAAA
pSgA-T GACCATAGCACAAGACAGGCGT 中间载体检测
pOSCas9-F GATGGGTTTTTATGATTAGAGTCC 表达载体检测
pOSCas9-R GGCTCGTATGTTGTGTGG
ZmCenT-F CAAGAAAATATCGGTCCATACGC 基因编辑验证
ZmCenT-R TGAGGTAAGGCAGGCATAACAA
ZmCenT-S ATCATTAGGTTCAGTTTTGTTTTT 基因测序验证测定
表1  所用的 PCR 引物序列
药品 用量
pOSCas9/ Asc I + Xba I 30ng
pSgA-T/Asc I + Xba I 10ng
T4 ligase buffer 1μl
T4 ligase 0.5μl
ddH2O 至10μl
表2  表达载体构建体系
图1  ZmCen基因结构、靶标导向RNA的设计及pOMS01-Cas9-ZmCen-gRNA载体构建及鉴定
图2  部分T0代编辑靶位点的试纸条及PCR扩增产物的琼脂糖凝胶电泳图
图3  部分T0 代与 T1 代植株基因编辑靶点序列比对结果
Target gene Number of sgRNA plants with different mutation types Number of
plants tested
Percent of
mutation
Insert Delete Change
T0 generation 5 (3.24%) 9 (5.84%) 17 (11.04%) 154 20.13%
T1 generation 10 (16.13%) 11 (17.74%) 19 (30.64%) 62 64.52%
表3  sgRNA基因编辑突变类型检测
图4  T0和T1代植株中Cas9基因PCR琼脂糖凝胶电泳图
图5  野生型与T1代基因突变株系的雄花序表型及花药、花粉发育状态对比
[1] Shen B, Zhang J, Wu H Y, et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res, 2013,23(5):720-723.
pmid: 23545779
[2] Shan Q W, Wang Y P, Li J, et al. Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols, 2014,9(10):2395-2410.
doi: 10.1038/nprot.2014.157
[3] Cho S W, Kim S, Kim J M, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013,31(3):230-232.
doi: 10.1038/nbt.2507
[4] Fu Y, Foden J A, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 2013,31(9):822-826.
doi: 10.1038/nbt.2623
[5] Feng Z Y, Zhang B T, Ding W N, et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 2013,23(10):1229-1232.
doi: 10.1038/cr.2013.114 pmid: 23958582
[6] Char S N, Neelakandan A K, Nahampun H, et al. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize, Plant Biotechnology Journal, 2017,15(2):257-268.
doi: 10.1111/pbi.12611 pmid: 27510362
[7] Jiang W Y, Bikard D, Cox D, et al. RNA guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 2013,31(3):233-239.
doi: 10.1038/nbt.2508 pmid: 23360965
[8] Coling D E, Salisbury J L. Characterization of the calcium-binding contractile protein centrin from Tetraselmis striata (Pleurastrophyceae). Journal Prolozool, 1992,39(3):385-391.
[9] Helmut P. Evolutionary cell biology of proteins from protists to humans and plants. Jounal Eukaryote Microbiology, 2018,65(2):255-289.
[10] Schiebel E, Bornens M. In search of function for centrins. Trends Cell Biology, 1995,5(5):197-201.
[11] Molinier J, Ramos C, Fritsch O, et al. CENTRIN2 modulates homologous recombination and nucleotide excision repair in Arabidopsis. Plant Cell, 2004,16(6):1633-4163.
doi: 10.1105/tpc.021378 pmid: 15155891
[12] Juliette A, Philippe N, Anna C, et al. Arabidopsis TONNEAU1 proteins are essential for preprophase mand formation and interact with Centrin. Plant Cell, 2008,20(8):2146-2159.
doi: 10.1105/tpc.107.056812 pmid: 18757558
[13] Klink V P, Wolniak S M. Centrin is necessary for the formation of the motile apparatus in spermatids of Marsilea. Molecular Biology of the Cell, 2001,12(3):761-776.
doi: 10.1091/mbc.12.3.761 pmid: 11251086
[14] Salisbury J L. Centrin, centrosomes, and mitotic spindle poles. Current Opinion in Cell Biology, 1995,7(1):39-45.
pmid: 7755988
[15] Lutz W, Lingle W L, McCormick D, et al. Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication. The Journal of Biological Chemistry, 2001,276(23):20774-20780.
doi: 10.1074/jbc.M101324200 pmid: 11279195
[16] 雷海英, 白凤麟, 段永红, 等. 玉米酵母双杂交cDNA文库的构建及ZmCEN互作蛋白的筛选. 西北植物学报. 2018,38(4):598-606.
Lei H Y, Bai F L, Duan Y H, et al. Construction of yeast two-hybrid cDNA library and screening of interaction proteins of ZmCen in maize. Acta Botanica Boreali-Occidentalia Sinica. 2018,38(4):598-606.
[17] Carroll D. Genome engineering with zinc-finger nucleases. Genetics, 2011,188(4):773-782.
doi: 10.1534/genetics.111.131433 pmid: 21828278
[18] Joung J K, Sander J D. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology, 2012,14(1):49-55.
doi: 10.1038/nrm3486 pmid: 23169466
[19] Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121), 819-823.
pmid: 23287718
[20] Svitashev S, Schwartz C, Lenderts B, et al. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Communications, 2016,16(7):1-7.
[21] Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 2015,33(1):41-52.
doi: 10.1016/j.biotechadv.2014.12.006 pmid: 25536441
[22] 刘纪麟. 玉米育种学. 第2版. 北京: 中国农业出版社, 2001: 34-35.
Liu J L. LMaize Breeding. 2nd ed. Beijing: China Agriculture Press, 2001: 34-35.
[23] Liang L, Flury S, Kalck V, et al. CENTRIN2 interacts with the Arabidopsis homolog of the human XPC protein (AtRAD4) and contributes to efficient synthesis-dependent repair of bulky DNA lesions. Plant Molecular Biology, 2006,61(1-2):345-356.
doi: 10.1007/s11103-006-0016-9 pmid: 16786311
[1] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[2] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[3] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[4] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[5] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[6] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[7] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[8] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[9] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[10] 王友华,邹婉侬,柳小庆,王兆华,孙国庆. 全球转基因玉米专利信息分析与技术展望 *[J]. 中国生物工程杂志, 2019, 39(12): 83-94.
[11] 苏爱国,宋伟,王帅帅,赵久然. 玉米细胞质雄性不育及其育性恢复基因的研究进展[J]. 中国生物工程杂志, 2018, 38(1): 108-114.
[12] 吴锁伟,万向元. 利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系[J]. 中国生物工程杂志, 2018, 38(1): 78-87.
[13] 田有辉,万向元. 玉米花药发育的细胞生物学与分子遗传学的研究方法[J]. 中国生物工程杂志, 2018, 38(1): 88-99.
[14] 柳双双,吴锁伟,饶力群,万向元. 玉米核雄性不育的分子机制研究与应用分析[J]. 中国生物工程杂志, 2018, 38(1): 100-107.
[15] 倪璇, 高金欣, 余传金, 刘铜, 李雅乾, 陈捷. 玉米弯孢叶斑病菌clt-1基因生物信息学分析和启动子的功能鉴定[J]. 中国生物工程杂志, 2017, 37(3): 37-42.