Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (12): 58-66    DOI: 10.13523/j.cb.2007051
综述     
基于CRISPR/Cas系统的单碱基编辑技术研究进展*
王玥,牟彦双(),刘忠华
东北农业大学黑龙江省动物细胞与遗传工程重点实验室 哈尔滨 150030
Progress of CRISPR/Cas Base Editing System
WANG Yue,MU Yan-shuang(),LIU Zhong-hua
Heilongjiang Key Laboratory of Animal Cell and Genetic Engineering, Northeast Agricultural University, Harbin 150030, China
 全文: PDF(30451 KB)   HTML
摘要:

基于CRISPR/Cas系统出现的单碱基编辑技术可以实现高效且简便的单个碱基的替换编辑,其原理是将胞嘧啶脱氨酶(cytosine deaminase)或腺苷脱氨酶(adenosine deaminase)与Cas9n(D10A)形成融合蛋白,通过CRISPR/Cas精准识别和定位DNA上的靶位点后,利用胞嘧啶脱氨酶或腺苷脱氨酶将靶点距离sgRNA位点基序(protospacer adjacent motif,PAM)序列端的4~7位的单个碱基发生单碱基转换或颠换。对基于CRISPR/Cas系统的单碱基编辑技术发现的历史、组成和分类、工作原理进行了概述,并总结了该系统最新进展及应用。

关键词: CRISPR/Cas9基因编辑单碱基编辑胞嘧啶脱氨酶腺苷脱氨酶    
Abstract:

Base editing is a precise genome editing technique based on the CRISPR/Cas system. Base editing use cytosine deaminases or adenine deaminases to perform base editing, and achieve base substitutions, respectively. Base editor, engineered by fusing the Cas9 nikase (Cas9n) with a cytidine deaminase enzyme is guided by a sgRNA to the target site. The position is the single base 4-7 of the target distance from the end of the sgRNA site motif (protospacer adjacent motif, PAM) sequence for editing.Without cutting doublestrand DNAs, base editor can precisely mediate the direct conversion of cytidine to thymineor or guanine to adenine. Therefore the base editing history, composition, working principle, and technology developments were briefly described.

Key words: CRISPR/Cas9    Gene editing    Single base editing    Cytosine Deaminase    Adenosine deaminase
收稿日期: 2020-07-30 出版日期: 2021-01-14
ZTFLH:  Q789  
基金资助: *转基因生物新品种培育科技重大专项(2016ZX08009-003-006);国家重点研发计划(2016YFA0100200);黑龙江省自然科学基金联合引导项目资助项目(LH2020C016)
通讯作者: 牟彦双     E-mail: muyanshuang@neau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王玥
牟彦双
刘忠华

引用本文:

王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.

WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System. China Biotechnology, 2020, 40(12): 58-66.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2007051        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I12/58

图1  CBE系统原理示意图
图2  ABE系统原理示意图
图3  双碱基编辑原理示意图
图4  RESCUE系统用pre-crRNA引导阵列对C到U和A到I进行多重编辑的示意图
图5  BE碱基编辑系统版本汇总
图6  CRISPR-X工作原理图
图7  dCpf1-BEs工作原理图
图8  eBE-S3结构示意图
图9  YE1-BE3-FNLS工作原理图
图10  hyCBE碱基编辑系统原理图
ABE version Deaminase Point mutation Base editing rate (%)
ABE1.2 TadA* D108N、A106V 3.2
ABE2.1 TadA* D147Y、E155V 11
ABE2.9 TadA* D147Y、E155V 20
ABE2.10 TadA(2.1)* D147Y、E155V 24
ABE3.1 TadA*-TadA* L84F、H123Y、I157F 29
ABE5.1 wtTadA-TadA* H36L、R51L、S146C、K157N 17
ABE5.3 wtTadA-TadA* H36L、R51L、S146C、K157N 33
ABE6.3 wtTadA-TadA* Removal of adverse point mutations 47
ABE7.10 wtTadA-TadA* Removal of adverse point mutations 50
表1  ABE碱基编辑系统优化表
图11  ABE碱基编辑系统优化图
[1] Jansen R, Gaastra1 W, Embden V, et al. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002,43(6):1565-1575.
pmid: 11952905
[2] Jinek M, Chylinski K, Fonfara I, et al. A Programmable dual-RNA-guided DNA endo nuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821.
pmid: 22745249
[3] Cong L, Ran A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823.
pmid: 23287718
[4] Ran F A, Wright J, Zhang F, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 2013,8(11):2281-2308.
pmid: 24157548
[5] Komor A C, Zuris J A, Liu D R, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016,533(7603):420-424.
pmid: 27096365
[6] Gaudelli N M, Komor A C, Rees H A, et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature, 2017,551(7681):464-471.
pmid: 29160308
[7] Grunewald J, Zhou R H, Lareau G A, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat Bio, 2020,38(7):861-864.
[8] Zhang X H, Zhu B Y, Chen L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat Bio, 2020,38(7):856-860.
[9] Abudayyeh O O, Gootenberg J S, Franklin B, et al. A cytosine deaminase for programmable single-base RNA editing. Science, 2019,365(6451):382-386.
pmid: 31296651
[10] Jin S, Zong Y, Gao Q, et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science, 2019,364(6437):292-295.
doi: 10.1126/science.aaw7166 pmid: 30819931
[11] Zuo E, Sun Y D, Wei W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science, 2019,364(6437):289-292.
pmid: 30819928
[12] Tarantino M E, Dow B J, Drohat A C, et al. Nucleosomes and the three glycosylases: high, medium, and low levels of excision by the uracil DNA glycosylase superfamily. DNA Repair, 2018,72(6):56-63.
[13] Mali P, Yang L H, Esvelt K M, et al. RNA-guided human genome engineering via Cas9. Science, 2013,339(6121):823-826.
[14] Kunkel T A, Erie D A. Eukaryotic mismatch repair in relation to DNA replication. Annu Rev Genet, 2015,49(5):291-313.
[15] Komor A C, Zhao K T, Packer M S, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv, 2017, 3(8): eaao4774.
pmid: 28845449
[16] Carter R J, Parsons J L. Base excision repair: a pathway regulated by post-translational modifications. Mol Cell Biol, 2016,36(10):1426-1437.
doi: 10.1128/MCB.00030-16 pmid: 26976642
[17] Jiang W, Feng S J, Huang S S, et al. BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity. Cell Res, 2018,28(8):855-861.
pmid: 29875396
[18] Nishida K, Arazoe T, Yachie N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 2016, 353(6305): aaf8729.
pmid: 27634516
[19] Ma Y, Zhang J Y, Yin W J, et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods, 2016,13(12):1029-1035.
pmid: 27723754
[20] Hess G T, Fresard L, Han K, et al. Directed evolution using dcas9-targeted somatic hypermutation in mammalian cells. Nature Methods, 2016,13(12):1036-1042.
doi: 10.1038/nmeth.4038 pmid: 27798611
[21] Kim Y B, Komor A C, Levy J M, et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol, 2017,35(4):371-376.
pmid: 28191901
[22] Li X, Wang Y, Liu Y J, et al. Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol, 2018,36(4):324-327.
doi: 10.1038/nbt.4102 pmid: 29553573
[23] Wang L, Wang Y, Liu Y J, et al. Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Res, 2017,27(10):1289-1292.
doi: 10.1038/cr.2017.111 pmid: 28849781
[24] Zuo E, Sun Y D, Yuan T L, et al. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects. Nat Methods, 2020,17(6):1-5.
[25] Zhang X H, Chen L, Zhu B Y, et al. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain. Nat Cell Biol, 2020,22(6):1-11.
[26] Hu J H, Miller S M, Geurts M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018,556(7699):57-63.
doi: 10.1038/nature26155 pmid: 29512652
[27] Hua K, Tao X, Zhu J K. Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnol J, 2019,17(2):499-504.
doi: 10.1111/pbi.12993 pmid: 30051586
[28] Yang L, Zhang X H, Wang L R, et al. Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell, 2018,9(9):814-819.
pmid: 30066232
[29] Hua K, Tao X P, Yuan F T, et al. Precise A.T to G.C Base Editing in the Rice Genome. Mol Plant, 2018,11(4):627-630.
doi: 10.1016/j.molp.2018.02.007 pmid: 29476916
[30] Koblan L W, Doman J L, Wilson C, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol, 2018,36(9):843-846.
doi: 10.1038/nbt.4172 pmid: 29813047
[31] Daub H, Specht K, Ullrich A. Strategies to overcome resistance to targeted protein kinase inhibitors. Nat Rev Drug Discov, 2004,3(12):1001-1010.
doi: 10.1038/nrd1579 pmid: 15573099
[32] Yeh W H, Oleinik S O, Levy J M, et al. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci Transl Med, 2020, 12(546): eaay9101.
doi: 10.1126/scitranslmed.abd0088 pmid: 32493789
[33] Tang X, Sretenovic S, Ren Q R, et al. Plant prime editors enable precise gene editing in rice cells. Mol Plant, 2020,13(5):667-670.
doi: 10.1016/j.molp.2020.03.010 pmid: 32222487
[34] Zong Y, Wang Y P, Li C, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol, 2017,35(5):438-440.
pmid: 28244994
[35] Kim K, Ryu S M, Kim S T, et al. Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol, 2017,35(5):435-437.
pmid: 28244995
[36] Liang P, Sun W, Sun Y, et al. Effective gene editing by high-fidelity base editor 2 in mouse zygotes. Protein & Cell, 2017.
doi: 10.1007/s13238-020-00764-0 pmid: 33141416
[37] Xie J K, Li N, Liu Q S, et al. Efficient base editing for multiple genes and loci in pigs using base editors. Nature Communications, 2019,10(1):2852-2865.
pmid: 31253764
[38] Yang J, Li J Y, Suzuki K C, et al. Genetic enhancement in cultured human adult stem cells conferred by a single nucleotide recoding. Cell Res, 2017,27(9):1178-1181.
doi: 10.1038/cr.2017.86 pmid: 28685772
[39] Wang L R, Li L X, Ma Y, et al. Reactivation of γ-globin expression through Cas9 or base editor to treat β-hemoglobinopathies. Cell Research, 2020,30(3):276-278.
doi: 10.1038/s41422-019-0267-z pmid: 31911671
[1] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[2] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[3] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[4] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[5] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[6] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[7] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[8] 周勤,王爽,张婷,李善刚,陈永昌. 小鼠及猕猴胚胎MECP2基因T158M单碱基突变体系的建立 *[J]. 中国生物工程杂志, 2020, 40(6): 31-39.
[9] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[10] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[11] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[12] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[13] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[14] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[15] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.