Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (12): 8-17    DOI: 10.13523/j.cb.2007039
新型冠状病毒检测与治疗     
COVID-19疫苗研究现状*
廖小艳1,陈丽丽1,2,**()
1南华大学公共卫生学院 衡阳 421001
2衡阳市新型冠状病毒核酸现场快速检测工程技术研究中心 衡阳 421001
The Progress in the Development of COVID-19 Vaccine
LIAO Xiao-yan1,CHEN Li-li1,2,**()
1 College of Public Health, University of South China, Hengyang, Hunan 421001,China
2 Hengyang Engineering Technology Research Center for Spot Rapid Diagnosis for 2019-nCoV, Hengyang 421001, China
 全文: PDF(488 KB)   HTML
摘要:

2019年底于中国武汉暴发的新型冠状病毒肺炎疫情来势凶猛,迅速蔓延全球,并被世界卫生组织列为“国际关注的突发公共卫生事件”,给全人类的健康及经济发展造成难以估量的损害。新型冠状病毒对人群普遍易感且传染性强,在无特效药物及治疗手段的情况下,疫苗接种是防控COVID-19疫情最有效且最经济的途径。目前全球疫苗研发正在加速进行,各国之间通力合作,共同应对此次疫情。主要对目前正在研发的针对SARS-CoV-2的灭活疫苗、病毒载体疫苗、基因工程重组亚单位疫苗、核酸疫苗的研究进展进行综述。

关键词: SARS-CoV-2COVID-19疫苗    
Abstract:

Breaking out in Wuhan, China at the end of year 2019, coronavirus disease 2019 (COVID-19) rapidly spread around the world. It was listed as a “public health emergency of international concern” by WHO and has caused incalculable damage to human health and economic development. Humans are generally susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the coronavirus that causes COVID-19. In the lack of specific drugs and treatments, vaccination is the most effective and economical way to prevent and control COVID-19. At present, the vaccines against SARS-CoV-2 are being developed in many countries, which work together to cope with the epidemic. This paper mainly reviews the research advances in the vaccines against SARS-CoV-2, i.e., inactivated vaccine, viral vector vaccine, genetic engineering recombinant subunit vaccine, and nucleic acid vaccine.

Key words: SARS-CoV-2    COVID-19    Vaccine
收稿日期: 2020-07-22 出版日期: 2021-01-14
ZTFLH:  Q819  
基金资助: * 衡阳市科技计划资助项目(衡财教指[2020]67号)
通讯作者: 陈丽丽     E-mail: chlili720612@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
廖小艳
陈丽丽

引用本文:

廖小艳,陈丽丽. COVID-19疫苗研究现状*[J]. 中国生物工程杂志, 2020, 40(12): 8-17.

LIAO Xiao-yan,CHEN Li-li. The Progress in the Development of COVID-19 Vaccine. China Biotechnology, 2020, 40(12): 8-17.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2007039        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I12/8

疫苗研发平台 国家 疫苗类型 研发者 合作单位 临床进展 优缺点
灭活疫苗 中国 灭活疫苗 北京科兴中维 中国医学科学院 Ⅲ 期 技术路线成熟、早期研发速度快、质控点和评价方法较明确,安全性较好等优点,但其需多次接种以维持足够的免疫效力
中国 灭活疫苗 北京生物制品研究所 中国CDC Ⅲ 期
中国 灭活疫苗 武汉生物制品研究所 武汉病毒研究所 Ⅲ 期
中国 灭活疫苗 中国医学科学院
医学生物学研究所
/ Ⅱ 期
哈萨克斯坦 灭活疫苗 哈萨克斯坦生物
安全问题研究所
/ Ⅰ/Ⅱ 期
印度 灭活疫苗 巴拉特生物技术公司 / Ⅰ/Ⅱ 期
中国 灭活疫苗 北京民海生物科技
有限公司
/ Ⅰ 期
病毒载体疫苗 英国 非复制型腺病毒
载体疫苗
牛津大学 阿斯利康 Ⅲ 期 易于生产制备,无需佐剂,安全性相对较高,可诱导产生细胞和粘膜免疫反应,但人群中普遍存在针对腺病毒的中和抗体,可能会影响疫苗的保护效果
中国 Ad5腺病毒载体疫苗 军事科学院 康希诺 Ⅲ 期
俄罗斯 非复制型腺病毒载体疫苗 加马利亚研究所 / Ⅲ 期
美国 非复制型腺病毒载体疫苗 Johnson&Johnson / Ⅲ 期
美国 非复制型腺病毒载体疫苗 ImmunityBio NantKwest Ⅰ 期
意大利、德国、 非复制型腺病毒载体疫苗 ReiThera LEUKOCARE、 Ⅰ 期
比利时 Univercells
美国 Ad5佐剂口服疫苗 Vaxart / Ⅰ 期
德国 非复制型病毒载体 慕尼黑大学 / Ⅰ 期
美国 复制型病毒载体 默沙东 IAVI Ⅰ 期
法、美、奥地利 复制型病毒载体 巴斯德研究所 匹兹堡大学、
Themis、默沙东
Ⅰ 期
中国 复制型病毒载体 万泰生物 厦门大学 Ⅰ 期
疫苗研发平台 国家 疫苗类型 研发者 合作单位 临床进展 优缺点
基因工程重组
亚单位疫苗
美国 重组S蛋白纳米
颗粒疫苗
Novavax / Ⅲ 期 不含病毒基因组,安全性比灭活疫苗更高,但其免疫效果较差,需多剂次接种或添加免疫佐剂以增强免疫效果
中国 三聚体亚单位S疫苗 智飞龙康生物制药 中科院微生物研究所 Ⅱ 期
美国 重组蛋白 肯塔基州生物加工公司 / Ⅰ/Ⅱ 期
法国 重组蛋白 赛诺菲-巴斯德 / Ⅰ/Ⅱ 期
中、英、美国 加佐剂重组蛋白 三叶草生物制药 葛兰素史克、Dynavax Ⅰ 期
澳大利亚、韩国 加AdvAXTM佐剂
重组S蛋白
Vaxine Medytox Ⅰ 期
澳大利亚 MF59佐剂重组S蛋白 昆士兰大学 CSL/Seqirus Ⅰ 期
台湾、美国 重组蛋白 高端疫苗生物制剂
股份有限公司
NIAID、Dynavax Ⅰ 期
古巴 重组蛋白 芬利疫苗研究所 / Ⅰ 期
俄罗斯 重组蛋白 FBRI SRC VB VECTOR / Ⅰ 期
中国 重组蛋白 四川大学华西医院 / Ⅰ 期
德国 重组蛋白 图宾根大学医院 / Ⅰ 期
巴西、美国 重组蛋白 COVAXX / Ⅰ 期
核酸疫苗 美国 mRNA疫苗 Moderna 美国国立过敏与
传染病研究所
Ⅲ 期 生产成本低、容易纯化、可产生同种异株交叉保护、免疫保护力强,但目前尚无上市的核酸类疫苗,其安全性有待考究
德、美、中国 mRNA疫苗 BioNTech 复星医药、辉瑞 Ⅲ 期
德国 mRNA疫苗 Curevac / Ⅱ 期
美国 DNA疫苗 Inovio制药 艾棣维欣、康泰生物 Ⅰ/Ⅱ 期
韩国 DNA疫苗 Genexine协会 / Ⅰ/Ⅱ 期
日本 DNA疫苗 大阪大学 AnGes、Takara Ⅰ/Ⅱ 期
印度 DNA疫苗 卡迪拉医疗有限公司 / Ⅰ/Ⅱ 期
美国、新加坡 mRNA疫苗 Arcturus 杜克-新加坡国立大学 Ⅰ/Ⅱ 期
英国 LNP-nCoVsaRNA疫苗 帝国理工学院 / Ⅰ 期
中国 mRNA疫苗 军事科学院 沃森生物技术公司 Ⅰ 期
病毒样颗
粒疫苗
英国、印度 RBD-HBsAg VLPs SpyBiotech 印度血清研究所 Ⅰ/Ⅱ 期 保留了天然病毒颗粒的空间构象和相应抗原表位,可激发体液免疫、细胞免疫和黏膜免疫,但其往往需要添加佐剂,且安全性和效能有待验证
加拿大 添加佐剂的植物
源性VLP
Medicago / Ⅰ 期
表1  已进入临床试验阶段的COVID-19疫苗
[1] Wen X T, Hou L T, Fang F C. Epidemic update and risk assessment of 2019 novel coronavirus-China. China CDC Weekly, 2020,2(6):83-86.
doi: 10.46234/ccdcw2020.024
[2] 杨利敏, 田德雨, 刘文军. 新型冠状病毒疫苗研究策略分析. 生物工程学报, 2020,36(04):593-604.
Yang L M, Tian D Y, Liu W J. Strategies for vaccine development of COVID-19. Chin J Biotech, 2020,36(04):593-604.
[3] Zhu N, Zhang D Y, Wang W L, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med, 2020,382(8):727-733.
pmid: 31978945
[4] Zhou P, Yang X L, Wang X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020,579(7798):270-273.
pmid: 32015507
[5] Lu R J, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020,395(10224):565-574.
pmid: 32007145
[6] Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature, 2020,579(7798):265-269.
pmid: 32015508
[7] Chan J F, Kok K H, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect, 2020,9(1):221-236.
doi: 10.1080/22221751.2020.1719902 pmid: 31987001
[8] 贾明, 王虹, 宋春利, 等. 新型冠状病毒肺炎文献整理及研究概述. 陕西医学杂志, 2020,49(3):259-263+266.
Jia M, Wang H, Song C L, et al. A summary of COVID-19’s literature arrangement and research. Shaanxi Medical Journal, 2020,49(3): 259-263+266.
[9] 詹菁, 刘倩, 张雨竹, 等. 新型冠状病毒2019-nCoV的一些初步认识. 环境化学, 2020,39(2):283-291.
Zhan J, Liu Q, Zhang Y Z, et al. Preliminary understanding of the novel coronavirus 2019-nCoV. Environmental Chemistry, 2020,39(2):283-291.
[10] Park W B, Kwon N J, Choi S J, et al. Virus isolation from the first patient with SARS-CoV-2 in Korea. J Korean Med Sci, 2020,35(7):84-88.
[11] Du L Y, Yang Y, Zhou Y S, et al. MERS-CoV spike protein: a key target for antivirals. Expert Opin Ther Targets, 2017,21(2):131-143.
pmid: 27936982
[12] 白仲虎, 昕然, 王荣斌. 哺乳动物细胞生产人用灭活疫苗相关技术进展. 中国细胞生物学学报, 2019,41(10):1986-1993.
Bai Z H, Xin R, Wang R B. Review of industrialized production technology of human inactivated vaccine based on mammalian cell culture. Chin J Cell Bio, 2019,41(10):1986-1993.
[13] Gao Q, Bao L L, Mao H Y, et al. Development of an inactivated vaccine for SARS-CoV-2. Science, 2020,369(6499):77-81.
doi: 10.1126/science.abc1932 pmid: 32376603
[14] International Clinical Trials Registry Platform. Safety and immunogenicity study of inactivated vaccine for prophylaxis of SARS CoV-2 infection(COVID-19)-full text view Clinical Trials.Gov. [2020-10-29]. https://clinical trials. Gov/ct2/show/NT04352608?term=S-inovac&cntry=CN&draw=2.
[15] International Clinical Trials Registry Platform. Clinical trial of efficacy and safety of Sinovac’s adsorbed COVID-19(inactivated) vaccine in healthcare professionals-full text viewClinicalTrials.gov. [2020-10-29]. https://clinicaltrials.gov/ct2/show/NCT04456595?term=v- accine&cond=covid-19&draw=2#contacts.
[16] Wang H, Zhang Y T, Huang B Y, et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell, 2020,182(1):1-19.
pmid: 32649872
[17] 中国临床试验注册中心. 评价新型冠状病毒灭活疫苗(2019-CoV)(Vero细胞)在3岁及以上健康人群中接种的安全性和免疫原性的随机、双盲、安慰剂平行对照 Ⅰ/Ⅱ 期临床试验. [2020-10-29]. http://www.chictr.org.cn/showproj.aspx?proj=53003.
Chinese Clinical Trial Registry. Evaluation of the safety and immunogenicity of inactivated novel coronavirus (2019-CoV) vaccine (Vero cells) in healthy population aged 3 years and above: a randomized, double-blind, placebo parallel-controlled phase I/II clinical trial. [2020-05-04]. http://www.chictr.org.cn/showproj.aspx?proj=53003.
[18] Xia S L, Duan K, Zhang Y T, et al. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes. JAMA, 2020,324(10):951.
doi: 10.1001/jama.2020.15543 pmid: 32789505
[19] 国药网. 全球首个新冠灭活疫苗国际临床(Ⅲ期)试验正式启动. [2020/10/29]. http://www.sinopharm.com/s/1223-4126-38313.html,2020-06-24/2020-07-03.
Sinopharm. Commencement ceremony for the phase clinical trial of inactivated COVID-19 vaccine in the united arab emirates. [2020/10/29]. http://www.sinopharm.com/s/1223-4126-38313.html,2020-06-24/2020-07-03.
[20] 成传刚, 慕婷, 袁军, 等. 重组病毒载体疫苗研究进展. 中国病毒病杂志, 2018,8(4):318-328.
Cheng C G, Mu T, Yuan J, et al. Research progress on recombinat viral vector vaccines. Chin J Viral Dis, 2018,8(4):318-328.
[21] Tu Y F, Chien C S, Yarmishyn A A, et al. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci, 2020,21(7):2657-2675.
doi: 10.3390/ijms21072657
[22] Vetter V, Denizer G, Friedland LR, et al. Understanding modern-day vaccines: hat you need to know. Ann Med, 2018,50(2):110-120.
pmid: 29172780
[23] Arora N K, Das M K. COVID-19 vaccine development and the way forward. Indian J Public Health, 2020,64:108-111.
doi: 10.4103/ijph.IJPH_520_20
[24] Humphreys I R, Sebastian S. Novel viral vectors in infectious diseases. Immunology, 2018,153(1):1-9.
doi: 10.1111/imm.12829 pmid: 28869761
[25] Doremalen N V, Lambe T, Spencer A, et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature, 2020,586:578-582.
doi: 10.1038/s41586-020-2608-y pmid: 32731258
[26] International Clinical Trials Registry Platform. A phase I/II study to determine efficacy, safety and immunogenicity of the candidate Coronavirus Disease (COVID-19) vaccine ChAdOx1 nCoV-19 in UK healthy adult volunteers - A phase I/II trial of a candidate COVID-19 vaccine (COV001). [2020-10-29]. who.int/trialsearch/Trial2.aspx?TrialID=EUCTR2020-001072-15-GB.
[27] Zhu F C, Li Y H, Guan X H, et al. Safety, tolerability,immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet, 2020, 395, (10240):1845-1854.
doi: 10.1016/S0140-6736(20)31208-3 pmid: 32450106
[28] 中国临床试验注册中心. 在18周岁及以上健康成人中开展重组新型冠状病毒(2019-nCOV)疫苗(腺病毒载体)随机、双盲、安慰剂对照设计的 Ⅱ 期临床试验. [2020-10-29]. http://www.chictr.org.cn/showproj.aspx?proj=52006.
Chinese Clinical Trial Registry. A randomized, double-blinded, placebo-controlled phase II clinical trial for recombinant novel coronavirus (2019-nCOV) vaccine (adenovirus vector) in healthy adults aged above 18 years. [2020-10-29]. http://www.chictr.org.cn/showproj.aspx?proj=52006.
[29] International Clinical Trials Registry Platform. An open study of the safety, tolerability and immunogenicity of “Gam-COVID-VacLyo” vaccine against COVID-19-full text view-Clinical Trials.gov. [2020-10-29]. https://clinicaltrials.gov/ct2/how/NCT04437875?sterm=vaccine&cond=covid-19&draw=4.
[30] International Clinical Trials Registry Platform. Clinical trial of efficacy, safety, Immunogenicity of Gam-COVID-Vac vaccine against COVID-19-full text view-Clinical Trials. gov. [2020-10-29]. https://clinicaltrials. gov/ct2/ show/NCT04530396? term=vaccine&cond = covid-19&draw = 3.
[31] Mercado N B, Zahn R, Wegmann F, et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature, 2020,586:583-588.
doi: 10.1038/s41586-020-2607-z pmid: 32731257
[32] International Clinical Trials Registry Platform. A study of Ad26.COV2. S for the prevention of SARS CoV-2 mediated COVID-19 in adult participants-full text veiw-clinicaltrials. gov. [2020-10-29]. https://clinicaltrials.gov/ct2/show/NCT04505722?term=NCT04505722&draw=2&rank=1.
[33] Glasper A. The quest to find an effective vaccine for COVID-19. Br J Nurs, 2020,29(11):644-646.
doi: 10.12968/bjon.2020.29.11.644 pmid: 32516041
[34] Sempowski G D, Saunders K O, Acharya P, et al. Pandemic preparedness: developing vaccines and therapeutic antibodies for COVID-19. Cell, 2020,181(7):1458-1463.
doi: 10.1016/j.cell.2020.05.041 pmid: 32492407
[35] Robson B. COVID-19 Coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed achilles’ heel conserved region to minimize probability of escape mutations and drug resistance. Comput Bio Med, 2020,121:103749.
doi: 10.1016/j.compbiomed.2020.103749
[36] Tian J H, Patel N, Haupt R, et al. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 elicits immunogenicity in baboons and protection in mice. bioRxiv, 2020, doi: https://doi.org/10.1101/2020.06.29.178509.
doi: https://doi.org/10.1101/2020.06.29.178509 pmid: 33398270
[37] Cheryl Keech. Phase 1-2 Trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. The New England Journal of Medicine. [2020-10-29]. https://www.nejm.org/doi/full/10.1056/NEJMoa2026920.
doi: 10.1056/NEJMe2100295 pmid: 33406335
[38] 智飞生物. 智飞生物重组新型冠状病毒疫苗获批临床试验. [2020-10-29]. http://www.zhifeishengwu.com/news/gsyw/qyyw/2020-06-23/444.html.
ZHI FEI Biological. Zhifei biological recombinant COVID-19 vaccine approved into clinical trial. [2020-10-29]. http://www.zhifeishengwu.com/news/gsyw/qyyw/2020-06-23/444.html.
[39] 智飞生物. 智飞生物重组新型冠状病毒疫苗启动Ⅱ期临床试验. [2020-10-29]. http://www.zhifeishengwu.com/news/gsyw/qyyw/2020-07-10/448.html.
ZHI FEI Biological. Zhifei biological recombinant COVID-19 vaccine started phase Ⅱ clinical trial. [2020-10-29]. http://www.zhifeishengwu.com/news/gsyw/qyyw/2020-07-10/448.html.
[40] GlaxoSmithKline. Clover Initiates Phase Ⅰ Clinical Trial for COVID-19 Vaccine Candidate. [2020-10-29]. http://www.cloverbiopharma.com/index.php?m=content&c=index&a=show&catid=11&id=48.
[41] World Health Organization. Draft landscape of COVID-19 candidate vaccines. [2020-10-29]. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
[42] Gaudinski M R, Houser K V, Morabito K M, et al. Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: randomised, open-label, phase 1 clinical trials. Lancet, 2018,391(10120):552-562.
doi: 10.1016/S0140-6736(17)33105-7 pmid: 29217376
[43] Wu S C. Progress and concept for COVID-19 vaccine development. Biotechnol J, 2020,15(6):2000147.
doi: 10.1002/biot.v15.6
[44] Wang L S, Shi W, Joyce M G, et al. Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun, 2015,6:7712.
doi: 10.1038/ncomms8712 pmid: 26218507
[45] International Clinical Trials Registry Platform. A phase 2a, randomized, observer-blind, placebo controlled, dose-confirmation study to evaluate the safety, reactogenicity, and immunogenicity of mRNA-1273 SARS-COV-2 vaccine in adults aged 18 years and older. [2020-10-29]. https://apps.who.int/trialsearch/Trial2.aspx?TrialID=NCT04405076.
[46] Amanat F, Krammer F. SARS-CoV-2 vaccines: status report. Immunity, 2020,52(4):583-589.
doi: 10.1016/j.immuni.2020.03.007 pmid: 32259480
[47] International Clinical Trials Registry Platform. A study to evaluate efficacy, safety, and immunogenicity of mRNA-1273 vaccine in adults aged 18 years and older to prevent COVID-19-full text veiw-ClinicalTrials.gov. [2020-10-29]. https://clinicaltrials.gov/ct2/sho-w/NCT04470427?term=vaccine&cond=covid-19&draw=5.
[48] Mulligan M J, Lyke K E, Kitchin N, et al. Phase 1/2 study to describe the safety and immunogenicity of a COVID-19 RNA vaccine candidate(BNT162b1) in adults 18 to 55 years of ages:interim report. medRxiv, https://doi.org/10.1101/2020.06.30.20142570.
doi: 10.1101/2020.12.15.20248214 pmid: 33354690
[49] International Clinical Trials Registry Platform. Phase 1 open-label study to evaluate the safety, tolerability and immunogenicity of INO-4800, a prophylactic vaccine against SARS-CoV-2, administered intradermally followed by electroporation in healthy volunteers. [2020-10-29]. https://apps.who.int/trialsearch/Trial2.aspx?TrialID=NCT04336410.
[50] International Clinical Trials Registry Platform. A phase I/IIa, dose-ranging trial to evaluate safety, tolerability and immunogenicity of INO-4800, a prophylactic vaccine against sars-cov-2, administered intradermally followed by electroporation in healthy volunteers. [2020-10-29]. https://apps.who.int/trialsearch/Trial2.aspx?TrialID=NCT04447781.
[51] Smith T R, Patel A, Ramos S, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nature communications, 2020,11(1):2601-2613.
doi: 10.1038/s41467-020-16505-0 pmid: 32433465
[52] International Clinical Trials Registry Platform. A Phase I clinical trial to evaluate the safety, tolerance and preliminary immunogenicity of different doses of a SARS-CoV-2 mRNA vaccine in population aged 18-59 years and 60 years and above. [2020-10-29]. https://apps.who.int/trialsearch/Trial2.aspx?TrialID=ChiCTR2000034112.
[53] 杨静. 新冠病毒mRNA疫苗研究获突破. 上海科技报, 2020,41(5):64-68.
Yang J. COVID-19 mRNA vaccine made a breakthrough. Shanghai Science and Technology News, 2020,41(5):64-68.
[54] 张琳, 李燕, 安志杰. 新型冠状病毒mRNA疫苗研发进展. 中国疫苗和免疫. (2020-05-26) [2020-06-29]. http://kns.cnki.net/kcms/detail/11.5517.R.20200525.1816.002.html.
Zhang L, Li Y, An Z J. Progress toward development of novel coronavirus mRNA vaccines. Chinese Journal of Vaccines and Immunization. (2020-05-26) [2020-06-29]. http://kns.cnki.net/kcms/detail/11.5517.R.20200525.1816.002.html.
[55] Mullard A. COVID-19 vaccine development pipeline gears up. Lancet, 2020,395(10239):1751-1752.
doi: 10.1016/S0140-6736(20)31252-6 pmid: 32505245
[56] 施逸凡. 病毒样颗粒疫苗在疾病防治中的研究进展. [2020-10-29]. http://kns.cnki.net/kcms/detail/22.1126.R.20200930.1207.002.html.
Shi Y F. Research progress of virus-like particles-based vaccines in disease prevention and treatment. [2020-10-29]. http://kns.cnki.net/kcms/detail/22.1126.R.20200930.1207.002.html.
[57] Faiq M A. B-cell engineering: A promising approach towards vaccine development for COVID-19. Med Hypotheses, 2020,144:109948.
doi: 10.1016/j.mehy.2020.109948 pmid: 32516733
[58] Langellotto F, Seiler B T, Yu J Y, et al. A rapidly adaptable biomaterial vaccine for SARS-CoV-2. bioRxiv, 2020, doi: https://doi.org/10.1101/2020.07.07.192203.
doi: https://doi.org/10.1101/2020.07.07.192203 pmid: 33398270
[59] Kim E, Erdos G, Huang S, et al. Microneedle array delivered recombinant coronavirus vaccines: immunogenicity and rapid translational development. EBioMedicine, 2020,55:102743.
doi: 10.1016/j.ebiom.2020.102743 pmid: 32249203
[1] 傅桂娥,李瑾,耿佩然,申梦秋,张金倩楠,赵洗尘. 医疗视角下粤港澳大湾区典型城市的新冠肺炎(COVID-19)疫情防控力量比较研究*[J]. 中国生物工程杂志, 2021, 41(12): 125-140.
[2] 肖云喜,张俊河,杨雯雯,程洪伟. 用于疫苗生产的人二倍体细胞研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 74-81.
[3] 朱潇静,王芮,张欣欣,靳家鑫,路闻龙,丁大顺,霍翠梅,李青梅,孙爱军,庄国庆. 利用细菌人工染色体技术构建整合F基因的重组MDV疫苗株*[J]. 中国生物工程杂志, 2021, 41(10): 33-41.
[4] 程旭,杨雨睛,吴赛男,侯勤龙,李咏梅,韩慧明. 金黄色葡萄球菌SarAIcaA及其融合基因的DNA疫苗构建及在小鼠免疫应答中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(7): 41-50.
[5] 刘珍珍,田大勇. 狂犬病疫苗蔗糖密度梯度离心纯化工艺开发 *[J]. 中国生物工程杂志, 2020, 40(4): 25-33.
[6] 钱颖,钱晨,白晓庆,王晶晶. 免疫佐剂在肿瘤免疫疗法中的应用进展 *[J]. 中国生物工程杂志, 2020, 40(3): 96-103.
[7] 谢华玲,吕璐成,杨艳萍. 全球冠状病毒疫苗专利分析[J]. 中国生物工程杂志, 2020, 40(1-2): 57-64.
[8] 潘彤彤,陈永平. 重型/危重型新型冠状病毒肺炎关键治疗技术研究进展[J]. 中国生物工程杂志, 2020, 40(1-2): 78-83.
[9] 朱小丽,黄翠,马丽丽,张超,巩玥,赵婉雨,赵秀芳,郭文姣,彭皓,张吉,梁慧刚. 新型冠状病毒病(COVID-19)研究进展[J]. 中国生物工程杂志, 2020, 40(1-2): 38-50.
[10] 井汇源,段二珍,董望. 体外转录的自我复制型mRNA疫苗研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 25-30.
[11] 冯雪娇,侯海龙,喻琼,王俊姝. 我国宫颈癌疫苗市场分析及对策研究*[J]. 中国生物工程杂志, 2020, 40(11): 96-101.
[12] 高彦,杜晶晶,王斌,刘琦,申志强. 气相色谱法对狂犬病疫苗灭活工艺中β-丙内酯研究[J]. 中国生物工程杂志, 2019, 39(6): 25-31.
[13] 杨琳,傅哲彦,吕正兵,舒建洪. 免疫佐剂分类及作用机制[J]. 中国生物工程杂志, 2019, 39(5): 114-119.
[14] 许嘉越,李紫倩,张革. 登革病毒3'UTRΔ30系列疫苗的研究进展[J]. 中国生物工程杂志, 2019, 39(3): 97-104.
[15] 蒋析文,董子维,刘悦,朱小亚. 生物标记物与精准医疗研究进展[J]. 中国生物工程杂志, 2019, 39(2): 74-81.