中国生物工程杂志, 2018, 38(1): 78-87 doi: 10.13523/j.cb.20180110

作物雄性不育与杂种优势利用专辑   |  

利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系

吴锁伟1,2, 万向元,1,2

1 北京科技大学生物前沿技术与应用研究中心 化学与生物工程学院 生物农业研究院 北京 100024

2 北京首佳利华科技有限公司 主要作物生物育种北京市工程实验室 生物育种北京市国际科技合作基地 北京 100192

Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production

WU Suo-wei1,2, WAN Xiang-yuan,1,2

1 Advanced Biotechnology and Application Research Center, Institute of Biology and Agriculture, School of Chemistry and Biological Engineering,University of Science and Technology Beijing, Beijing 100024, China

2 Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China

收稿日期: 2017-11-30   修回日期: 2017-12-5   网络出版日期: 2018-01-15

基金资助: 国家自然科学基金项目.  31771875
国家重点研发计划项目.  2017YFD0102001, 2017YFD0101200
国家国际科技合作项目.  2015DFA30640
国家科技支撑计划项目.  2014BAD01B02
中央高校基本科研业务费专项资金.  06500060
国家“万人计划”科技创新领军人才特殊支持经费.  
北京市科技计划资助项目.  Z161100000916013

Received: 2017-11-30   Revised: 2017-12-5   Online: 2018-01-15

作者简介 About authors

通讯作者万向元,电子信箱:wanxiangyuan@ustb.edu.cn , E-mail:wanxiangyuan@ustb.edu.cn

摘要

雄性不育技术在作物杂种优势利用和杂交种生产中发挥着重要作用。基于核质互作雄性不育的“三系法”与光温敏核不育的“两系法”已经在水稻等主要作物的杂交制种中获得了广泛应用,但是存在着资源利用效率低、育性不稳定、易受外界环境影响等诸多问题。近三十年来,利用生物技术创建不同类型的植物雄性不育系取得了一系列突破性进展。主要针对玉米、水稻、小麦三大作物的基因工程雄性不育技术的最新进展进行总结,特别详细地描述了本实验室最近研究创制的玉米多控不育技术体系,以期为相关研究和产业化应用提供技术参考。

关键词: 雄性不育 ; 基因工程 ; 杂种优势 ; 玉米 ; 水稻 ; 小麦

Abstract

Male sterility plays an important role in hybrid vigor utilization and hybrid seed production in crops. The three-line system and two-line system based on cytoplasmic male sterility and photo-thermo sensitive male sterility had been widely used in crop hybrid seed production. But there are some limitations such as low efficiency of germplasm utilization, unstable fertility in variable environmental condition. In the last three decades, many artificial manipulations of male sterility in plants have been accomplished by using genetic engineering or biotechnology strategies. The reported approaches used for generating artificial biotechnology male-sterile lines in the main three crops such as maize, rice and wheat are outlined. Especially, detail the multi-control sterility (MCS) system in maize designed by our laboratory recently is described. This will give some insights on the commercial application of male sterility in crop breeding and hybrid seed production.

Keywords: Male sterility ; Genetic engineering ; Hybrid vigor ; Maize ; Rice ; Wheat

PDF (2014KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

吴锁伟, 万向元. 利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系. 中国生物工程杂志[J], 2018, 38(1): 78-87 doi:10.13523/j.cb.20180110

WU Suo-wei, WAN Xiang-yuan. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production. China Biotechnology[J], 2018, 38(1): 78-87 doi:10.13523/j.cb.20180110

作物的杂种优势是指杂交种在一种或多种性状上优于其双亲的现象,通常表现为增产、稳产、抗病、抗逆等。杂交制种的关键技术在于发展和利用可以控制的授粉系统,以防止自花授粉导致的自交衰退。雄性不育在玉米、水稻、小麦等主要作物的杂种优势利用和杂交制种中发挥了重要作用。植物雄性不育是指在雌雄同株植物中,雄蕊发育不正常,不能产生有功能的花粉,但雌蕊发育正常,能接受正常花粉而受精结实,并能将雄性不育性状遗传给后代的现象。植物雄性不育按照不育性遗传方式的差异,可分为3类:细胞质雄性不育、细胞核雄性不育和核质互作型雄性不育[1]。由于母体遗传的原因,第一类细胞质不育系的F1不能自交结实,因而不能在育种和生产上利用;利用常规杂交育种技术,第二类核不育系的保持和繁殖存在困难,也不能在育种和生产上有效利用;第三类核质互作不育系,理论和实践上都可以被育种利用,但是该类不育系的广泛利用可能会导致杂交种细胞质单一化,易受细胞质专一性病原小种的侵染而导致杂交种生产存在巨大的风险,如20世纪七八十年代北美玉米带出现的小斑病T小种侵染造成毁灭性的生产灾难。此外,在某些环境中,核质互作不育系的育性不稳定,有可能降低杂交制种的纯度和产量。

随着现代生物技术的快速发展,一方面,利用分子生物技术,有望将遗传稳定的核不育基因有效地利用起来,即通过生物技术保持和繁殖非转基因的雄性不育系,如我们实验室的玉米多控不育技术[2]、美国杜邦先锋的SPT技术[3,4]、水稻智能不育技术[5]等;另一方面,可以通过基因工程手段,创制各种诱导型/条件型雄性不育系,即通过生物技术创制转基因的不育系,如美国孟山都的玉米草甘膦诱导型雄性不育技术[6]、水稻草丁膦诱导型雄性不育技术[7]、小麦断裂基因雄性不育系统[8,9]等。近年来,随着分子生物学和基因工程技术的发展,作物细胞核雄性不育的利用获得了一些突破性进展。本文将从玉米、水稻、小麦等主要作物的基因工程不育技术的创制策略、研究现状、利用途径和应用前景等几方面进行阐述,以期为高效利用作物核雄性不育技术、提高作物杂种优势利用效率及建立作物高效育种和制种技术体系提供参考依据。

1 通过生物技术保持和繁殖非转基因的作物核雄性不育系

该类技术的共同特点是通过转基因技术实现作物核雄性不育系的保持和繁殖,但是最终生产的不育系及杂交种不含转基因成分。主要包括我们实验室的玉米多控不育技术、美国杜邦先锋公司的玉米SPT技术及邓兴旺实验室的水稻智能不育技术等。

1.1 玉米多控不育技术的研究进展

1.1.1 玉米多控不育技术的概念 玉米多控不育技术体系(multi-control sterility system, MCS)是本实验室万向元及团队在美国SPT技术的基础上,经过吸收创新,创建的国际领先的第三代玉米杂交育种和制种技术体系[2]。该技术利用多个功能元件(1个育性恢复基因、2个花粉自我降解基因、1个红色荧光蛋白基因和1个抗除草剂基因)的协同作用,通过生物育种和传统育种技术相结合,建立一种高效、安全、稳定的玉米隐性核不育系的保持和繁殖技术体系。

1.1.2 玉米多控不育技术的技术原理 玉米多控不育技术综合利用了生物技术、荧光蛋白筛选技术和花粉失活技术策略,有效地解决了玉米隐性核雄性不育系的保持和繁殖问题。其设计思路是利用现代生物技术,将玉米花粉育性恢复基因、花粉自我降解基因、红色荧光蛋白基因和抗除草剂基因组合在一起,构建多控不育遗传转化载体,通过遗传转化和杂交、回交转育技术,导入到玉米隐性核雄性不育系中,以恢复不育系的育性并能有效繁殖,实现一系两用的目的(图1a)。该体系生产的转基因保持系包含5个功能元件表达盒:(1)育性恢复基因。例如,ZmMs7基因,编码一个PHD-finger转录因子,可以恢复玉米雄性不育系ms7的育性。(2)花粉自我降解基因ZmAA。该基因在花粉特异性启动子PG47驱动下表达α-淀粉酶,阻碍含有转基因元件的花粉发育。(3)另一个花粉自我降解基因Dam。该基因在花粉特异性启动子Zm13驱动下表达DNA腺嘌呤甲基化酶,进一步使含有转基因元件的花粉败育。(4)色选标记基因DsRed2mCherry。该基因在糊粉层特异启动子LTP2驱动下表达红色荧光蛋白,以便将基因型杂合的保持系自交后产生的正常颜色不育系和红色荧光保持系种子,通过色选机高效分开。(5)抗除草剂基因bar。用于遗传转化时的筛选标记以及转基因材料的筛选或保持系种植田的除杂。该转基因保持系自交后产生50%的不育系种子(非红色荧光种子)和50%的保持系种子(红色荧光种子)。通过机械色选技术可以有效地将这两部分种子分离,正常颜色种子可以繁殖为不育系,用于玉米杂交育种和杂交制种;红色荧光种子自交产生其本身和不育系种子。

图1

图1   玉米多控不育技术体系的整体技术路线

Fig.1   The technological strategy of maize multi-control sterility system


多控不育系的保持和繁殖策略(图1b):由于转基因保持系含有花粉自我降解基因ZmAADam,导致所有含有转基因元件的花粉败育,只能产生一种非转基因的花粉(基因型ms)。因此,通过不育系与保持系的杂交,可以产生100%的不育系,从而实现多控不育系的保持和繁殖。

多控不育系的杂交育种和制种策略(图1c):该多控不育系属于隐性核不育,所有的可育系都可以恢复不育系的育性。因此,以多控不育系作为母本,可以与任何可育自交系杂交,进行杂交育种和制种。

1.1.3 玉米多控不育技术的研究进展 玉米多控不育技术的核心元件是玉米隐性核不育基因(育性恢复基因)的发掘。我们实验室利用图位克隆策略,精细定位了10多个玉米隐性核不育基因,并且成功克隆了4个玉米隐性核不育基因ms1ms7ms30ms33(表1),并成功获得了中国国家发明专利保护[10,11,12,13]。利用这些育性基因,分别构建了系列玉米多控不育遗传转化商业化载体(表2),也成功获得了中国国家发明专利保护[14,15,16]。通过玉米遗传转化和传统的回交转育,已经获得了部分不同遗传背景的玉米多控不育保持系中间材料(图2)。

表1   本实验室为创建玉米多控不育技术体系所克隆的玉米隐性核不育基因

Table 1  The cloned male sterility genes for construction of the MCS system in maize in our lab

No.Gene nameCoded proteinsReferences
1ms1, male sterility1LOB/LBD protein 30[10]
2ms7, male sterility7PHD-finger protein[2, 11]
3ms30, male sterility30GDSL-Lipase[12]
4ms33, male sterility33GPAT protein[13]

新窗口打开| 下载CSV


表2   本实验室为创建玉米多控不育保持系所构建的遗传转化商业化载体

Table 2  Commercial constructs for development of the MCS system using male sterility genes

ConstructsPromoter-gene combinationReferences
pMCS0101p35S∷Bar//pZmMs1:ZmMs1//pZm13∷Dam//pPG47∷Bt1:ZmAA//pLTP2∷mCherry[14]
pMCS0102p35S∷Bar//pPG47∷Bt1:ZmAA//pZmMs1∷ZmMs1//pLTP2∷DsRed2[14]
pMCS0701p35S∷Bar//pZmMs7:ZmMs7//pZm13∷Dam//pPG47∷Bt1:ZmAA//pLTP2∷mCherry[15]
pMCS0702p35S∷Bar//pPG47∷Bt1:ZmAA//pZmMs7∷ZmMs7//pLTP2∷DsRed2[15]
pMCS0703p35S∷Bar//pPG47∷Bt1:ZmAA//pZm13∷Dam//pZmMs7∷ZmMs7//pLTP2∷DsRed2[15]
pMCS3001p35S∷Bar//pZmMs30:ZmMs30//pZm13∷Dam//pPG47∷Bt1:ZmAA//pLTP2∷mCherry[16]
pMCS3002p35S∷Bar//pPG47∷Bt1:ZmAA//pZmMs30∷ZmMs30//pLTP2∷DsRed2[16]
pMCS3003p35S∷Bar//pPG47∷Bt1:ZmAA//pZm13∷Dam//pZmMs30∷ZmMs30//pLTP2∷DsRed2[16]
pMCS3301p35S∷Bar//pZmMs33:ZmMs33//pZm13∷Dam//pLTP2∷mCherry
pMCS3302p35S∷Bar//pPG47∷Bt1:ZmAA//pZm13∷Dam//pZmMs33∷ZmMs33//pLTP2∷DsRed2

Note:ZmMs1, ZmMs7, ZmMs30, ZmMs33, Maize fertility restoration genes; ZmAA, α-amylase gene; DsRed2 and mCherry, Red fluorescence gene; p35S, Cauliflower mosaic virus 35S promoter; Bar, Herbicide resistance gene; Bt1, Brittle-1 transit peptide; pZm13, Zm13 gene promoter; Dam, DNA adenine methylase gene;pLTP2, Lipid transfer protein-2 gene promoter; pZmMs, maize Ms gene promoter; pPG47, Polygalacturonase gene promoter

新窗口打开| 下载CSV


图2

图2   三个基于Ms7基因和ms7突变体的玉米多控不育转基因保持系表型[2]

Fig.2   Phenotype of three ZmMs7 transgenic maize male-sterile maintainer lines (BC2F1)

(a), (c) and (e) Ear photos of the three male-sterile maintainer lines (1601#, 1602# and 1603#) under bright light (BL) (b), (d) and (f) The ear photos corresponding to (a), (c) and (e) Under a red fluorescence (RF) filter, respectively. These lines are the BC2F1 progeny of the elite line M0701-2 crossed with ms7-6007 mutant and then backcrossed to inbred line Zheng58. BC2F1 is the second backcross generation. Bars = 1cm


1.1.4 玉米多控不育技术的优势 玉米多控不育技术通过两个花粉自我降解基因,确保转基因花粉不传递,规避了转基因生物安全问题;建立了不受光温敏影响的玉米隐性核不育材料的有效繁殖技术体系,解决了近百年来玉米隐性核不育材料在杂交育种和制种上不能有效利用的问题,并克服了当前“三系法”和“二系法”普遍存在的杂交制种风险和问题;降低了杂交制种的成本和提高了杂交种的制种纯度;有助于建立高效的玉米商业化育种技术体系,极大地提高了玉米新优品种的培育效率。

1.2 玉米SPT的研究进展

2006年,美国杜邦先锋公司推出了一种新型玉米基因工程不育制种技术,即SPT(seed production technology)。该技术综合利用了转基因技术、花粉败育技术和荧光蛋白色选技术,将玉米花粉自我降解基因,雄性恢复基因和红色荧光蛋白标记基因组合在一起,构建遗传转化载体,并导入到玉米隐性核雄性不育系中,从而恢复不育系的育性并能有效繁殖[3]。该转基因株系自交后,产生50%的不育系种子(非荧光种子)和50%的保持系种子(荧光种子),然后通过荧光色选技术,分离这两种具有恢复基因和没有恢复基因的种子,从而实现一系两用的目的:非荧光种子可以作为不育系,用于玉米杂交育种和杂交制种;荧光种子自交产生保持系后代和正常颜色不育系种子。由于不育系本身及其生产出来的商品种子并不含有转基因成分,所以在美国这项技术并不需要经过美国农业部、环保署和药物与食品监督局的特别批准。该技术于2011年6月被美国农业部动植物卫生检验署(USDA-APHIS)解除转基因管制审批[17]。从2012年起,杜邦先锋公司已经在美国种业市场实现玉米SPT技术的商业化杂交制种应用。随后,SPT技术分别在澳大利亚和日本解除转基因管制审批[18, 19],为实现世界范围内大面积推广奠定了基础。

2016年,Wu等[3]详细介绍了以玉米隐性核不育基因ms45及其突变体为基础的SPT技术体系及其产业化应用探索。该SPT载体含有3个功能元件表达盒:育性恢复基因Ms45、花粉自我降解基因ZmAA和色选标记基因DsRed2。最近,Fox等[4]又报道了以玉米显性核不育基因Ms44及其突变体为基础的SPT技术,该基因同时可以提高玉米的氮利用率,从而提高玉米在低氮条件下的产量。

本实验室的玉米多控不育技术与美国杜邦先锋公司的SPT技术的最大区别在于:美国对转基因植物推广种植的监管要求比较宽松,但中国对植物转基因成分传递率是零容忍。据此,本实验的玉米多控不育技术在商业化载体中增加了一个转基因花粉自我降解基因(Dam)和除草剂抗性基因(Bar),结合转基因荧光种子色选技术,最终确保玉米不育系种子都为非转基因种子。

1.3 水稻智能不育技术

最近,邓兴旺实验室报道了一种基于基因工程进行分子设计的水稻智能不育技术[5]。该技术借鉴了玉米SPT技术,其创制策略如下:利用可以稳定遗传的水稻隐性核雄性不育材料osnp1,通过转入育性恢复基因OsNP1恢复花粉育性,同时使用花粉自我降解基因ZmAA使含转基因成分的花粉败育,并利用荧光分选技术分离不育系与保持系两种类型的种子。水稻智能不育技术将现代生物技术与传统育种方法成功结合,使大量水稻隐性核雄性不育基因的利用成为了可能(图3)。

图3

图3   三个水稻智能不育保持系的穗部表型

Fig.3   The panicle phenotype of three rice male-sterility maintainer lines

(a), (b) and (c) the panicles of three independent rice male-sterility maintainer lines in the paddy field. In each panicle. the red fluorescence seeds are transgenic male-sterility maintainer lines, the normal color seeds are non-transgenic male-sterility lines


水稻智能不育技术的优势:利用智能不育系杂交制种安全,配组自由。与常规杂交育种和常规转基因育种相比,智能不育给杂交水稻育种带来的突破包括: 智能不育系育性稳定,不受环境和遗传背景影响,克服了三系不育系因高温诱导花粉可育、两系核不育系因低温诱导可育的育性不稳定给杂交制种造成的安全风险;智能不育系不育性状遗传行为简单, 不受遗传背景影响,易于开展优良性状的聚合育种,快速选育出优质、高产、多抗、适宜于各种生态条件的杂交组合,有利于扩大杂交水稻适应区域;育性恢复基因与花粉自我降解基因在转基因过程中紧密连锁,阻断了转基因成分通过花粉漂移;实现了用转基因手段生产非转基因的不育系种子和杂交稻种子。

2 通过生物技术创制作物转基因雄性不育系

该类技术的特点是通过生物技术手段,创制自然界不存在的转基因不育突变体,即最终的不育系含有转基因元件。例如,通过基因工程创制大量的条件型或诱导型植物雄性不育系已有报道[20]。下面主要介绍玉米、水稻和小麦三大作物的基因工程雄性不育技术的最新进展。

2.1 玉米草甘膦诱导型雄性不育技术

大量的研究表明,多数作物的雄配子对草甘膦非常敏感,在合适的时期喷施草甘膦会导致植物雄性不育。据此,美国孟山都公司创建了一种玉米草甘膦诱导型雄性不育技术(glyphosate-mediated male sterility)。该技术通过表达草甘膦不敏感基因CP4-EPSPS获得抗草甘膦玉米,通过分子设计,在玉米雄穗中降低CP4-EPSPS的表达,同时优化草甘膦喷施参数,即在V8及以后时期以单倍剂量(0.84kg/hm2)喷施玉米上部叶片,使草甘膦高效积聚于雄穗中,从而导致雄穗对草甘膦高度敏感而表现为草甘膦诱导型雄性不育[6]。基于该技术,美国孟山都公司创建了RHS杂交制种系统(roundup hybridization system)。该系统的优势在于:(1)一系两用。在合适的时期喷施草甘膦,可以导致雄性不育,作为不育系;不喷施草甘膦时,RHS系表现为雄花育性正常,可以自交结实、繁殖,作为保持系。(2)制种高效、种子纯度高、抗除草剂。大田制种时,RHS母本系与RR父本系间隔种植,通过喷施草甘膦,可以使RHS系雄性不育,但RR系育性不受影响,从而生产高纯度、抗草甘膦的玉米杂交种。(3)因不需要人工去雄,降低了人工制种成本。

2.2 水稻草丁膦诱导型雄性不育技术

最近,Rao等报道了一种水稻的草丁膦诱导型雄性不育系统[7]。其技术思路是,构建一个水稻花药特异表达启动子(OSIPA)调控的、来源于大肠杆菌的L-鸟苷酸酶(L-ornithinase,argE)基因的转化载体,通过遗传转化和分子鉴定获得argE转基因水稻。由于argE基因编码一个N-乙酰鸟苷酸酶(NAO),其功能是去除N2-乙酰鸟苷酸的乙酰基团从而产生乙酸和鸟苷酸。因此,argE基因编码的NAO酶可以使无细胞毒性的N-乙酰-草丁膦(N-ac-PPT)去除乙酰基团而产生有细胞毒性的草丁膦(PPT)。对该转基因水稻喷施N-ac-PPT时,由于花药特异表达argE基因,在花药中产生毒性PPT而表现为完全雄性不育;然而,不喷施N-ac-PPT时,argE转基因水稻花药中不产生有毒性的PPT则表现为正常可育。雄性不育的argE转基因水稻与正常水稻杂交后可以结实,说明雌配子的育性不受喷施N-ac-PPT的影响。这种水稻草丁膦诱导型雄性不育系统不需要创制特定的恢复系,因而在生产上具有较大的应用潜力。

2.3 小麦断裂基因雄性不育技术

Kempe等[8]报道了一个基于断裂基因导致雄性不育的杂交小麦生产系统。其技术路线是:该系统基于一个由两个互补基因位点的非重叠序列编码的细胞毒素基因Barnase在绒毡层细胞的特异表达,该基因翻译后,Barnase片段通过一个Intein介导的反式剪接自激活过程被组装到一个活性毒素酶中,一旦植物细胞毒素蛋白Barnase形成后,绒毡层将会被破坏,从而导致花粉败育(图4a)。两个Barnase基因断裂片段分别位于同源染色体的相同染色体位置,功能上类似于一对隐性等位基因,因为只有当小麦同时携带两个互补的断裂基因位点(A1A2杂合子)时,才能产生有活性的Barnase毒蛋白进而导致雄性不育。利用不育系(A1A2)作为母本,与含有一个Barnase片段的可育系(A1A1或A2A2)杂交,可以产生50%的不育系和50%的可育系(图4b)。在杂交育种中,同时携带两个互补的Barnase断裂基因位点(A1A2)的小麦品系可以用作母本不育系,伴随着减数分裂,成对的Barnase位点可以分离到不同的配子中。因此,杂交种后代只能遗传一个Barnase片段(A1或A2),表现为雄花育性正常,自交可以结实(图4c)。

图4

图4   利用小麦断裂基因不育技术进行杂交小麦育种和制种的技术路线[8]

Fig.4   The experimental design of the split-gene system for hybrid wheat seed production


3 结语与展望

通过生物技术保持和繁殖自然界中存在的核雄性不育系,如玉米多控不育(MCS)技术、玉米SPT技术和水稻智能不育技术等,具有以下优势:(1)转基因过程,非转基因产品(图5)。在这类雄性不育技术中,通过不育系与保持系杂交繁殖不育系时,保持系含有特定的转基因功能元件,如育性恢复基因、花粉自我降解基因、荧光标记基因和抗除草剂基因等。但是,通过荧光色选后,分选出的雄性不育系则不含有任何转基因元件,其组配的杂交种也不含有转基因元件。因而不育系和杂交种都是非转基因的,可以有效防止转基因元件飘逸造成潜在的生态危害。(2)该类技术产生的核雄性不育系相对于细胞质雄性不育系或光温敏核不育系而言,遗传更稳定、不受外界光温等环境条件影响,用于杂交育种和制种更加安全。(3)该类技术产生的核雄性不育系不受细胞质影响,理论上任何可育自交系材料都可以作为恢复系,因此可以大大提高杂交种选育的资源利用率。(4)该类技术生产的高纯度的雄性不育系,可以保证生产杂交种的纯度和产量,同时大大降低制种的人工成本。

图5

图5   玉米MCS和SPT技术的整体生产流程

Fig.5   The schematic representation of the MCS and SPT process with commercial hybrid seed production


然而,需要指出的是,该类技术虽然在国外已经实现产业化应用,但是在以下几方面还需要进一步完善:(1)设法提高花粉自我降解基因的效率,确保转基因花粉不遗传。实验表明,玉米多控不育技术通过两个花粉自我降解基因的共同作用,可以显著提高转基因花粉败育概率[2],更加安全。(2)探明细胞核不育基因的遗传稳定性以及对其他农艺性状的影响。可以通过核不育系与大量的普通自交系测交和回交,通过多年多点的测试,观察该不育基因在不同遗传背景下的育性表现以及对其他农艺性状的影响。(3)该类技术的核心是雄性不育系对应的育性恢复基因,但并非所有的雄性不育系都符合产业化要求。因此,未来还需要大量发掘无花粉型、遗传稳定的核雄性不育系、克隆不同类型的育性恢复基因,从而筛选出最适合产业化的不育系和不育基因。

通过生物技术创制诱导型或条件型转基因雄性不育系,目前也有大量的研究报道[20]。但是,目前能够成功产业化应用的很少。我们分析主要有以下几方面的原因:(1)基因工程雄性不育的彻底性和稳定性不能满足生产要求;(2)诱导型不育系的育性转换影响因素比较多,成本较高、操作复杂;(3)转基因的环境安全性问题;(4)部分国家对于转基因作物种植的限制政策。因此,该类不育系的产业化应用依然任重道远。

总之,通过生物技术创制主要作物的雄性不育系统并在杂交育种和杂交制种中实现产业化应用,相对于传统的“三系法”、“两系法”杂交制种技术,具有简便、快速、高效、安全等优势。随着分子生物技术的不断完善和快速发展,各种新型基因工程雄性不育系统必将在作物杂种优势利用中发挥越来越重要的作用。

作者已声明无竞争性利益关系。

参考文献

Shukla P, Singh N K, Gautam R, et al.

Molecular approaches for manipulating male sterility and strategies for fertility restoration in plants

Mol Biotechnol, 2017,59(9-10): 445-457.

URL     [本文引用: 1]

Usable pollination control systems have proven to be effective system for the development of hybrid crop varieties, which are important for optimal performance over varied environments and years. They also act as a biocontainment to check horizontal transgene flow. In the last two decades, many genetic manipulations involving genes controlling the production of cytotoxic products, conditional male sterility, altering metabolic processes, post-transcriptional gene silencing, RNA editing and chloroplast engineering methods have been used to develop a proper pollination control system. In this review article, we outline the approaches used for generating male sterile plants using an effective pollination control system to highlight the recent progress that occurred in this area. Furthermore, we propose possible future directions for biotechnological improvements that will allow the farmers to buy hybrid seed once for many generations in a cost-effective manner.

Zhang D F, Wu S W, An X L, et al.

Construction of a multi-control sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor

Plant Biotechnol J. [2017-11-30]. .

URL     [本文引用: 5]

Although hundreds of genetic male sterility (GMS) mutants have been identified in maize, few are commercially used due to a lack of effective methods to produce large quantities of pure male-sterile seeds. Here, we develop a multicontrol sterility (MCS) system based on the maize male sterility 7 (ms7) mutant and its wild-type Zea mays Male sterility 7 (ZmMs7) gene via a transgenic strategy, leading to the utilization of GMS in hybrid seed production. ZmMs7 is isolated by a map-based cloning approach and encodes a PHD-finger transcription factor orthologous to rice PTC1 and Arabidopsis MS1. The MCS transgenic maintainer lines are developed based on the ms7-6007 mutant transformed with MCS constructs containing the (i) ZmMs7 gene to restore fertility, (ii) α-amylase gene ZmAA and/or (iii) DNA adenine methylase gene Dam to devitalize transgenic pollen, (iv) red fluorescence protein gene DsRed2 or mCherry to mark transgenic seeds and (v) herbicide-resistant gene Bar for transgenic seed selection. Self-pollination of the MCS transgenic maintainer line produces transgenic red fluorescent seeds and nontransgenic normal colour seeds at a 1:1 ratio. Among them, all the fluorescent seeds are male fertile, but the seeds with a normal colour are male sterile. Cross-pollination of the transgenic plants to male-sterile plants propagates male-sterile seeds with high purity. Moreover, the transgene transmission rate through pollen of transgenic plants harbouring two pollen-disrupted genes is lower than that containing one pollen-disrupted gene. The MCS system has great potential to enhance the efficiency of maize male-sterile line propagation and commercial hybrid seed production.

Wu Y, Fox T W, Trimnell M R, et al.

Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops

Plant Biotechnol J, 2016, 14(3): 1046-1054.

URL     PMID:26442654      [本文引用: 3]

We have developed a novel hybridization platform that utilizes nuclear male sterility to produce hybrids in maize and other cross‐pollinating crops. A key component of this platform is a process termed Seed Production Technology (SPT). This process incorporates a transgenic SPT maintainer line capable of propagating nontransgenic nuclear male‐sterile lines for use as female parents in hybrid production. The maize SPT maintainer line is a homozygous recessive male sterile transformed with a SPT construct containing (i) a complementary wild‐type male fertility gene to restore fertility, (ii) an α‐amylase gene to disrupt pollination and (iii) a seed colour marker gene. The sporophytic wild‐type allele complements the recessive mutation, enabling the development of pollen grains, all of which carry the recessive allele but with only half carrying the SPT transgenes. Pollen grains with the SPT transgenes exhibit starch depletion resulting from expression of α‐amylase and are unable to germinate. Pollen grains that do not carry the SPT transgenes are nontransgenic and are able to fertilize homozygous mutant plants, resulting in nontransgenic male‐sterile progeny for use as female parents. Because transgenic SPT maintainer seeds express a red fluorescent protein, they can be detected and efficiently separated from seeds that do not contain the SPT transgenes by mechanical colour sorting. The SPT process has the potential to replace current approaches to pollen control in commercial maize hybrid seed production. It also has important applications for other cross‐pollinating crops where it can unlock the potential for greater hybrid productivity through expanding the parental germplasm pool.

Fox T, DeBruin J, Haug Collet K, et al.

A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize

Plant Biotechnol J, 2017, 15(8): 942-952.

URL     PMID:28055137      [本文引用: 2]

Abstract Application of nitrogen fertilizer in the past 50 years has resulted in significant increases in crop yields. However, loss of nitrogen from crop fields has been associated with negative impacts on the environment. Developing maize hybrids with improved nitrogen use efficiency is a cost-effective strategy for increasing yield sustainably. We report that a dominant male-sterile mutant Ms44 encodes a lipid transfer protein which is expressed specifically in the tapetum. A single amino acid change from alanine to threonine at the signal peptide cleavage site of the Ms44 protein abolished protein processing and impeded the secretion of protein from tapetal cells into the locule, resulting in dominant male sterility. While the total nitrogen (N) content in plants was not changed, Ms44 male-sterile plants reduced tassel growth and improved ear growth by partitioning more nitrogen to the ear, resulting in a 9.6% increase in kernel number. Hybrids carrying the Ms44 allele demonstrated a 4%-8.5% yield advantage when N is limiting, 1.7% yield advantage under drought and 0.9% yield advantage under optimal growth conditions relative to the yield of wild type. Furthermore, we have developed an Ms44 maintainer line for fertility restoration, male-sterile inbred seed increase and hybrid seed production. This study reveals that protein secretion from the tapetum into the locule is critical for pollen development and demonstrates that a reduction in competition between tassel and ear by male sterility improves grain yield under low-nitrogen conditions in maize.

Chang Z, Chen Z, Wang N, et al.

Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene

Proceedings of the National Academy of Sciences, 2016, 113(49): 14145-14150.

URL     PMID:27864513      [本文引用: 2]

The breeding and large-scale adoption of hybrid seeds is an important achievement in agriculture. Rice hybrid seed production uses cytoplasmic male sterile lines or photoperiod/thermo-sensitive genic male sterile lines (PTGMS) as female parent. Cytoplasmic male sterile lines are propagated via cross-pollination by corresponding maintainer lines, whereas PTGMS lines are propagated via self-pollination under environmental conditions restoring male fertility. Despite huge successes, both systems have their intrinsic drawbacks. Here, we constructed a rice male sterility system using a nuclear gene named Oryza sativa No Pollen 1 (OsNP1). OsNP1 encodes a putative glucose–methanol–choline oxidoreductase regulating tapetum degeneration and pollen exine formation; it is specifically expressed in the tapetum and miscrospores. The osnp1 mutant plant displays normal vegetative growth but complete male sterility insensitive to environmental conditions. OsNP1 was coupled with an α-amylase gene to devitalize transgenic pollen and the red fluorescence protein (DsRed) gene to mark transgenic seed and transformed into the osnp1 mutant. Self-pollination of the transgenic plant carrying a single hemizygous transgene produced nontransgenic male sterile and transgenic fertile seeds in 1:1 ratio that can be sorted out based on the red fluorescence coded by DsRed. Cross-pollination of the fertile transgenic plants to the nontransgenic male sterile plants propagated the male sterile seeds of high purity. The male sterile line was crossed with ∼1,200 individual rice germplasms available. Approximately 85% of the F1s outperformed their parents in per plant yield, and 10% out-yielded the best local cultivars, indicating that the technology is promising in hybrid rice breeding and production.

Feng P C, Qi Y, Chiu T, et al.

Improving hybrid seed production in corn with glyphosate-mediated male sterility

Pest Manag Sci, 2014, 70(2): 212-218.

URL     PMID:23460547      [本文引用: 2]

Abstract BACKGROUND: Hybrid corn varieties exhibit benefits associated with heterosis and account for most of the corn acreage in the USA. Hybrid seed corn is produced by crossing a female parent which is male-sterile and therefore incapable of self-pollination with a male parent as the pollen donor. The majority of hybrid seed corn is produced by mechanical detasseling which involves physically removing the tassel, a process that is laborious and costly. RESULTS: Glyphosate-resistant corn was developed via expression of a glyphosate insensitive 5-enolpyruvyl-shikimate 3-phosphate synthase enzyme (CP4-EPSPS). Experimentation with molecular expression elements resulted in selective reduction of CP4-EPSPS expression in male reproductive tissues. The resulting plant demonstrated sterile tassel following glyphosate application with little to no injury to the rest of the plant. Using (14)C-glyphosate as a marker, we also examined the translocation of glyphosate to the tassel via spray application in a track sprayer to simulate field application. The results allowed optimization of spray parameters such as dose, spray timing and target to maximize tassel delivery of glyphosate for efficient sterilization. CONCLUSION: The Roundup hybridization system (RHS) is a novel process for hybrid seed production based on glyphosate-mediated male sterility. RHS replaces mechanical detasseling with glyphosate spray and greatly simplifies the process of hybrid seed corn production.

Rao G S, Tyagi A K, Rao K V.

Development of an inducible male-sterility system in rice through pollen-specific expression of l-ornithinase (argE) gene of E. coli

Plant Sci, 2017, 256: 139-147.

URL     PMID:28167027      [本文引用: 2]

In the present investigation, an inducible male-sterility system has been developed in the rice. In order to introduce inducible male-sterility, the coding region of L-ornithinase ( argE ) gene of E. coli was fused to the Oryza sativa indica pollen allergen (OSIPA) promoter sequence which is known to function specifically in the pollen grains. Transgenic plants were obtained with argE gene and the transgenic status of plants was confirmed by PCR and Southern blot analyses. RT-PCR analysis confirmed the tissue-specific expression of argE in the anthers of transgenic rice plants. Transgenic rice plants expressing argE, after application of N-acetyl-phosphinothricin (N-ac-PPT), became completely male-sterile owing to the pollen-specific expression of argE. However, argE -transgenic plants were found to be self fertile when N-ac-PPT was not applied. Normal fertile seeds were obtained from the cross pollination between male-sterile argE transgenics and untransformed control plants, indicating that the female fertility is not affected by the N-ac-PPT treatment. These results clearly suggest that the expression of argE gene affects only the male gametophyte but not the gynoecium development. Induction of complete male-sterility in the rice is a first of its kind, and moreover this male- sterility system does not require the deployment of any specific restorer line.

Kempe K, Rubtsova M, Gils M.

Split-gene system for hybrid wheat seed production

Proc Natl Acad Sci USA, 2014, 111(25): 9097-9102.

URL     PMID:24821800      [本文引用: 3]

Abstract Hybrid wheat plants are superior in yield and growth characteristics compared with their homozygous parents. The commercial production of wheat hybrids is difficult because of the inbreeding nature of wheat and the lack of a practical fertility control that enforces outcrossing. We describe a hybrid wheat system that relies on the expression of a phytotoxic barnase and provides for male sterility. The barnase coding information is divided and distributed at two loci that are located on allelic positions of the host chromosome and are therefore "linked in repulsion." Functional complementation of the loci is achieved through coexpression of the barnase fragments and intein-mediated ligation of the barnase protein fragments. This system allows for growth and maintenance of male-sterile female crossing partners, whereas the hybrids are fertile. The technology does not require fertility restorers and is based solely on the genetic modification of the female crossing partner.

Kempe K, Rubtsova M, Riewe D, et al.

The production of male-sterile wheat plants through split barnase expression is promoted by the insertion of introns and flexible peptide linkers

Transgenic Res, 2013, 22(6): 1089-1105.

URL     PMID:23720222      [本文引用: 1]

Abstract The successful use of transgenic plants depends on the strong and stable expression of the heterologous genes. In this study, three introns (PSK7-i1 and PSK7-i3 from Petunia and UBQ10-i1 from Arabidopsis) were tested for their ability to enhance the tapetum-specific expression of a split barnase transgene. We also analyzed the effects of introducing multiple copies of flexible peptide linkers that bridged the fusion domains of the assembled protein. The barnase fragments were assembled into a functional cytotoxin via intein-mediated trans-splicing, thus leading to male sterility through pollen ablation. A total of 14 constructs carrying different combinations of introns and peptide linkers were transformed into wheat plants. The resulting populations (between 41 and 301 independent plants for each construct) were assayed for trait formation. Depending on which construct was used, there was an increase of up to fivefold in the proportion of plants exhibiting male sterility compared to the populations harboring unmodified constructs. Furthermore, the average barnase copy number in the plants displaying male sterility could be reduced. The metabolic profiles of male-sterile transgenic plants and non-transgenic plants were compared using gas chromatography-mass spectrometry. The profiles generated from leaf tissues displayed no differences, thus corroborating the anther specificity of barnase expression. The technical advances achieved in this study may be a valuable contribution for future improvement of transgenic crop systems.

万向元,吴锁伟,周岩,.

植物花粉发育调控基因Ms1及其编码蛋白: 中国, ZL201410381072.5,

2017-09-05.[2017-08-19]. .

URL     [本文引用: 2]

Wan X Y, Wu S W, Zhou Y, et al.

The DNA Sequence and the Coded Orotein of Ms1 Gene Which Controls the Male Fertility of Plants. China, ZL201410381072.5,

2017-09-05.[2017-08-19]. .

URL     [本文引用: 2]

万向元,吴锁伟,谢科,.

一种控制玉米雄性生育力的ZmMs7基因序列及其编码蛋白,中国,ZL201410338212.0

2017-09-05.[2017-08-19].

URL     [本文引用: 2]

Wan X Y, Wu S W, Xie K, et al.

The DNA Sequence and the Coded Protein of ZmMs7 Gene Which Controls the Male Fertility of Maize. China, ZL201410338212.0,

2017-09-05.[2017-08-19]. .

URL     [本文引用: 2]

万向元,吴锁伟,周岩,.

一种玉米花粉减数分裂后发育调控基因Ms30的DNA 序列及其编码蛋白,中国,ZL201410703778.9

2017-04-12.[2017-08-19]. .

URL     [本文引用: 2]

Wan X Y, Wu S W, Xie K, et al.

The DNA Sequence and the Coded Protein of a Pollen Post-meiotic Developmental Gene Ms30 in Maize. China, ZL201410703778.9,

2017-04-12.[2017-08-19]. .

URL     [本文引用: 2]

万向元,吴锁伟,张丹凤,.

玉米花粉发育调控基因Ms33的DNA 序列及其编码蛋白

,中国,CN201610880590.0, 2017-02-15.[2017-08-19]. .

URL     [本文引用: 2]

Wan X Y, Wu S W, Zhang D F, et al.

The DNA Sequence and the Coded Protein of a Pollen Developmental Gene Ms33 in Maize. China, CN201610880590.0,

2017-02-15. [2017-08-19]. .

URL     [本文引用: 2]

万向元,吴锁伟,谢科,.

基于Ms1基因构建的介导玉米雄性生育力的多控不育载体及其应用,中国,ZL201510298173.0

201702-27.[2017-08-19]..

URL     [本文引用: 3]

Wan X Y,Wu S W,Xie K, et al.

The Multi-control Male Sterility Constructs Based on Ms1 Gene and Their Application. China, ZL201510298173.0,

2017-02-27.[2017-08-19]. .

URL     [本文引用: 3]

万向元,谢科,吴锁伟,.

一种基于Ms7基因构建的多控不育表达载体及其用于保持和繁殖玉米隐性核不育系的方法,中国,ZL201510301333.2

2017-03-08.[2017-08-19]. .

URL     [本文引用: 4]

Wan X Y, Xie K, Wu S W, et al.

The Multi-control Male Sterility Constructs Based on Ms7 Gene and Their Application in Maintaining and Producing Maize Recessive Genic Male Sterility Lines. China, ZL201510301333.2,

2017-03-08.[2017-08-19]. .

URL     [本文引用: 4]

万向元,吴锁伟,谢科,.

一种基于Ms30基因建立的玉米雄性不育系保持和繁殖的方法,中国,ZL201510300778.9

2017-02-22.[2017-08-19]. .

URL     [本文引用: 4]

Wan X Y, Xie K, Wu S W, et al.

The methods of maintaining and producing maize recessive genic male sterility lines based on Ms30 gene. China, ZL201510300778.9,

2017-02-22.[2017-08-19]. .

URL     [本文引用: 4]

USDA-APHIS.

Pioneer Hi-Bred International, Inc. Seed Production Technology (SPT) Process OECD Unique Identifier: DP-3213-1 Corn: Final Environmental Assessment. Riverdale, MD: United States Department of Agriculture Animal and Plant Health Inspection Service

[2017-11-15]. 2011.

URL     [本文引用: 1]

FSANZ.

New Plant Breeding Techniques. Report of a Workshop hosted by Food Standards Australia New Zealand (FSANZ)

[2017-11-15].. 2012.

URL     [本文引用: 1]

Japan-MHLW,

The outcome of the discussion on F1 hybrid seeds produced with the DuPont’s Seed Production Technology (SPT) using DP-1

Japan Ministry of Health, Labor, and Welfare. [2017-11-15].. 2013.

URL     [本文引用: 1]

王玉峰, 黄霁月, 杨金水.

基因工程培育可恢复的植物雄性不育系的研究进展

遗传, 2011, 33(1): 40-47.

Magsci     [本文引用: 2]

植物雄性不育是植物杂种优势利用的资源, 具有重要的生产利用价值。植物雄性不育可从自然突变、人工诱变和远缘杂交中发现, 现在可通过细胞工程和基因工程等方法来创造。文章综述了利用基因工程方法制备雄性不育品系及其相应的育性恢复策略, 分为“单组分策略”和“双组分策略”。其中利用“单组分策略”制备的不育植株是条件型雄性不育(可逆转的雄性不育), 它能在特定的条件下实现雄性可育与不育的转换, 实践中可直接作为两用系(不育系和保持系)用于两系法杂交制种; “双组分策略”是利用基因互作和亲本杂交直接培育雄性不育系, 或利用基因互作原理分别研制不育系和恢复系, 用于三系法生产杂交种。文章分析了 “单组分策略”和“双组分策略”的基因工程方法培育雄性不育系及其相应育性恢复策略优缺点, 对以上两种技术路线在实际应用中的现状作了分析和展望。

Wang Y F, Huang J Y, Yang J S.

Progress in the study of producing reversible male sterile line by genetic engineering

Hereditas (Beijing), 2011, 33(1): 40-47.

Magsci     [本文引用: 2]

植物雄性不育是植物杂种优势利用的资源, 具有重要的生产利用价值。植物雄性不育可从自然突变、人工诱变和远缘杂交中发现, 现在可通过细胞工程和基因工程等方法来创造。文章综述了利用基因工程方法制备雄性不育品系及其相应的育性恢复策略, 分为“单组分策略”和“双组分策略”。其中利用“单组分策略”制备的不育植株是条件型雄性不育(可逆转的雄性不育), 它能在特定的条件下实现雄性可育与不育的转换, 实践中可直接作为两用系(不育系和保持系)用于两系法杂交制种; “双组分策略”是利用基因互作和亲本杂交直接培育雄性不育系, 或利用基因互作原理分别研制不育系和恢复系, 用于三系法生产杂交种。文章分析了 “单组分策略”和“双组分策略”的基因工程方法培育雄性不育系及其相应育性恢复策略优缺点, 对以上两种技术路线在实际应用中的现状作了分析和展望。

/