Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (12): 76-81    DOI:
    
Preparation of Two Different Lengths of FopA Antigen and Antibody Used in Francisella tularemia Detecting
JING Ying-ying1,2, YANG Yu1, WANG Jing1, YANG Yong-li1, HU Kong-xin1, WANG Zhen-dong2
1. Chinese Academy of Inspection and Quarantine, Beijing 100123, China;
2. College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China
Download: HTML   PDF(651KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:To establish an BL21 expression system of Francisella tularemia-specific antigen (FopA-L and FopA-S), then obtain their highly active recombinant protein and the polyclonal antibodies which can be applied for Francisella monitoring, diagnosis and treatment.Methods:Constructing a plasmid expression vector pET100 FopA-L and FopA-S, then transforming FopA plasmid into E. coli BL21 cells, induced by IPTG, purifing protein by chelate nickel ion-NTA (Ni-NTA) affinity chromatography, making polyclonal antibody by recombinant FopA-L and FopA-S proteins immune rabbits and antibody were determined by Western blot, ELISA and GICA. Results:Constructed expression vectors pET100 of FopA-L and FopA-S, the BL21 cell lines obtained can highly express target proteins, antibody specifically combined with them which can be used in Francisella detecting were prepared successfully, with a titer of more than 1 ∶100000 and highly specific. Conclusion:Preparation the FopA-L and FopA-S antigen and antibody laid the foundation for the establishment of rapid detection method of Francisella.



Key wordsFrancisella tularemia      FopA      E.coli      Expression      Polyclonal antibody     
Received: 06 August 2010      Published: 25 December 2010
ZTFLH:  Q819  
Cite this article:

JING Ying-ying, YANG Yu, WANG Jing, YANG Yong-li, HU Kong-xin, WANG Zhen-dong. Preparation of Two Different Lengths of FopA Antigen and Antibody Used in Francisella tularemia Detecting. China Biotechnology, 2010, 30(12): 76-81.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I12/76

[1]   McLendon M K, Apicella M A, Allen L A. Francisella tularensis: taxonomy, genetics, and Immunopathogenesis of a potential agent of biowarfare. Annu Rev Microbiol, 2006, 60: 167-185.
[2]   Hopla C E. The ecology of tularemia.Adv Vet Sci Comp Med, 1974, 18: 25-53.
[3]   宫英, 逄增昌, 强新,等. 土拉弗氏菌病患者血清抗体20年变化趋势分析. 中国公共卫生, 2006, 22(10): 1201-1202. Gong Y, Pang Z C, Qiang X, et al. Chinese Journal of Public Health, 2006, 22(10): 1201-1202.
[4]   Porsch-Ozcurumez M, Kischel N, Priebe H, et al. Comparison of enzyme-linked immunosorbent assay, Western blotting, microagglutination, indirect immunofluorescence assay, and flow cytometry for serological diagnosis of tularaemia. Clinical and Diagnostic, 2004, 11(6): 1001-1015.
[5]   Aronova N V, Pavlovich N V. The use if lipopolysaccharide in the dot solid phase enzyme immunoassay. Mikrobiol Epidemiol Immunobiol, 2000, 5: 75-78.
[6]   Berdal B P, Mehl R, Haaheim H, et al. Field detection of Francisella tularensis.Scand J Infect Dis, 2000, 32(3): 287-291.
[7]   Magnarelli L, Levy S, Koski R. Detetion of antibodies to Francisella tularensis in cats.Rvsc, 2007, 82(1): 22-26.
[8]   Tarnvik A, Berglund L. Tularemia. Eur Respir J, 2003, 21(2): 361-373.
[9]   靖学芳, 安云庆. LPS和抗LPS治疗的研究及应用进展. 微生物学免疫学进展, 2004, 32(2): 53-57. Jing X F, An Y Q. Progress in Microbiology and Immunology, 2004, 32(2): 53-57.
[10]   Huntley J F, Conley P G, Hagman K E, et al. Characterization of Francisella tularensis outer membrane proteins. J Bacteriol, 2007, 189(2): 561-574.
[11]   Fulop M, Manchee R, Titball R. Role of lipopolysaccharide and a major outer membrane protein from Francisella tularensis in the induction of immunity against tularemia. Vaccine, 1995, 13(13):1220-1225.
[12]   Saier M H, Werner P K, Muller M. Insertion of proteins into bacterial membranes: mechanis, characteristics, and comparisons with the eucaryotic process. Microbiol Rev, 1989, 53(3): 333-366.
[13]   Gunnar von Heijne. Life and death of a signal peptide. Nature, 1998, 396 (12):111-113.
[14]   何斌, 端青. 重组土拉弗朗西斯菌外膜蛋白 FopA 的融合表达及抗原性分析. 生物技术通讯, 2010, 21(1): 32-34. He B, Duan Q. Letters in Biotechnology, 2010, 21(1): 32-34.
[15]   王增, 马会勤, 张文,等. 包涵体蛋白的分离和色谱法体外复性纯化研究进展. 中国生物工程杂志, 2009, 29(7): 102-107. Wang Z, Ma H Q, Zhang W, et al.China Biotechnology, 2009, 29(7): 102-107.
[16]   张婷婷, 叶波平. 包涵体蛋白质的复性研究进展. 药物生物技术, 2007, 14 (4): 306-309. Zhang T T, Ye B P. Pharmaceutical Biotechnology, 2007, 14 (4): 306-309.
[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] CHEN Xiu-yue,ZHOU Wen-feng,HE Qing,SU Bing,ZOU Ya-wen. Preparation, Purification and Identification of Bacteriophage Qβ Virus-like Particles[J]. China Biotechnology, 2021, 41(7): 42-49.
[3] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[4] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[5] LIU Mei-qin,GAO Bo,JIAO Yue-ying,LI Wei,YU Jie-mei,PENG Xiang-lei,ZHENG Yan-peng,FU Yuan-hui,HE Jin-sheng. Long Non-coding RNA Expression Profile in A549 Cells Infected with Human Respiratory Syncytial Virus[J]. China Biotechnology, 2021, 41(2/3): 7-13.
[6] WANG Hui-lin,ZHOU Kai-qiang,ZHU Hong-yu,WANG Li-jing,YANG Zhong-fan,XU Ming-bo,CAO Rong-yue. Research Progress of Human Coagulation Factor VII and the Recombinant Expression Systems[J]. China Biotechnology, 2021, 41(2/3): 129-137.
[7] YANG Xi,LUAN Yu-shi. Preliminary Study of Sly-miR399 in Tomato Resistance to Late Blight[J]. China Biotechnology, 2021, 41(11): 23-31.
[8] CHEN Su-fang,XIA Ming-yin,ZENG Li-yan,AN Xiao-qin,TIAN Min-fang,PENG Jian. Recombinant Expression and Detection of Antimicrobial Activity of Cec4a[J]. China Biotechnology, 2021, 41(10): 12-18.
[9] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[10] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[11] DENG Tong,ZHOU Hai-sheng,WU Jian-ping,YANG Li-rong. Enhance Soluble Heteroexpression of a NADPH-Dependent Alcohol Dehydrogenase Based on the Chaperone Strategy[J]. China Biotechnology, 2020, 40(8): 24-32.
[12] ZHANG Xiao-hang,LI Yuan-yuan,JIA Min-xuan,GU Qi. Identification and Expression of Elastin-like Polypeptides[J]. China Biotechnology, 2020, 40(8): 33-40.
[13] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[14] JIANG Dan-dan,WANG Yun-long,LI Yu-lin,Zhang Yi-qing. Study on the Delivery of RGD Modified Virus-Like Particles to ICG Targeted Tumors[J]. China Biotechnology, 2020, 40(7): 22-29.
[15] CHENG Xu,YANG Yu-qing,WU Sai-nan,HOU Qin-long,LI Yong-mei,HAN Hui-ming. Construction of DNA Vaccines of Staphylococcus aureus SarA, IcaA and Their Fusion Genes and Preliminary Study in Mouse Immune Response[J]. China Biotechnology, 2020, 40(7): 41-50.