Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (04): 110-115    DOI:
    
Biotransformation—From Whole-cell Biocatalysis To Metabolic Engineering
GUO Ming,HU Chang-hua
Institute of Modern Biopharmaceuticals, School of Pharmaceutical Sciences,Southwest University,Chongqing 400716,China
Download: HTML   PDF(404KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Biocatalysis was employed to do chemical transformations on non-natural man-made organic compounds. Biological methods offer a true practical advantage over chemical synthesis. With the development of microbial strain involved in bioconversion, enzymes and proteins are increasingly being used as biocatalysts in the generation of products that have until now been derived using traditional chemical processes. Such products range from pharmaceutical and agrochemical building blocks to fine and bulk chemicals and, more recently, components of biofuels. Recombinant microbial whole-cell biocatalysis is a valuable optimization and modification approach for producing enantiomerically pure interemediates. Metabolic engineering based on the systems-level analysis of cells and organisms is now offering a new powerful way of designing and developing strains to improve the performance in biocatalysis. Recent advances and development strategies of bioconversion were highlighted here.



Key wordsBioconversion      Whole-cell biocatalysis      Genetic engineering      Metabolic engineering     
Received: 23 December 2009      Published: 29 April 2010
Corresponding Authors: Hu Chang-hua     E-mail: chhhu@vip.sina.com
Cite this article:

Hu Chang-hua. Biotransformation—From Whole-cell Biocatalysis To Metabolic Engineering. China Biotechnology, 2010, 30(04): 110-115.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I04/110

[1] Schoemaker H E,Mink D,Wubbolts M G. Dispelling the myths  Biocatalysis in industrial synthesis. Science,2003,299(5613): 16941697. 
[2] Yu H M, Yin J. Construction and selection of the novel recombinant Escherichia coli strain for poly(betahydroxybutyrate) production. Journal of Bioscience and Bioengineering,2000,89(4): 307311. 
[3] De Carvalho C,Da Fonseca M. Biotransformation of terpenes. Biotechnology Advances,2006,24(2): 134142. 
[4] Dai J G,Qu R J,Zou J H,et al. Structural diversification of taxanes by wholecell biotransformation. Tetrahedron,2008,64(35): 81028116. 
[5] Peng Y L,Demain A L. Bioconversion of compactin to pravastatin by Actinomadura sp. ATCC 55678. Journal of Molecular Catalysis B: Enzymatic,2000,10(13): 151156. 
[6] Park J W,Lee J K,Kwon T J,et al. Bioconversion of compactin into pravastatin by Streptomyces sp. Biotechnology Letters,2003,25(21): 18271831. 
[7] Wang F Q,Li B,Wang W,et al. Biotransformation of diosgenin to nuatigenintype steroid by a newly isolated strain,Streptomyces virginiae IBL14. Applied Microbiology and Biotechnology,2007,77: 771777. 
[8] Ghosh S,Sachan A,Sen S K,et al. Microbial transformation of ferulic acid to vanillic acid by Streptomyces sannanensis MTCC 6637. Journal of Industrial Microbiology & Biotechnology,2007,34(2): 131138. 
[9] Liu J H,Chen Y G,Yu B Y,et al. A novel ketone derivative of artemisinin biotransformed by Streptomyces griseus ATCC 13273. Bioorganic & Medicinal Chemistry Letters,2006,16(7): 19091912. 
[10] Faramarzi M A,Aghelnejad M,TabatabaeiYazdi M,et al. Metabolism of androst4en3,17dione by the filamentous fungus Neurospora crassa. Steroids, 2008,73: 1318. 
[11] Choudhary M I,Khan N T,Musharraf S G,et al. Biotransformation of adrenosterone by filamentous fungus, Cunninghamella elegans. Steroids,2007,72: 923929. 
[12] Dong J Y,Chen Y G,Song H C,et al. Hydroxylation of the triterpenoid nigranoic acid by the fungus Gliocladium roseum YMF1.00133. Chemistry & Biodiversity,2007,4(2): 112117. 
[13] Luetz S,Giver L,Lalonde J. Engineered enzymes for chemical production. Biotechnology and Bioengineering,2008,101(4):647653. 
[14] Pollard D J,Woodley J M. Biocatalysis for pharmaceutical intermediates: the future is now. Trends in Biotechnology,2007,25(2):6673. 
[15] Xie X K,Tang Y.Efficient synthesis of simvastatin by use of wholecell biocatalysis.Applied and Environmental Microbiology,2007,73(7): 20542060. 
[16] Xie X K,Watanabe K,Wojcicki W A,et al. Biosynthesis of lovastatin analogs with a broadly specific acyltransferase. Chemistry and Biology, 2006,13: 11611169. 
[17] Xie X K,Wong W W,Tang Y.Improving simvastatin bioconversion in Escherichia coli by deletion of bioH. Metabolic Engineering,2007,9(4): 379386. 
[18] Gao X,Xie X K,Pashkov I,et al. Directed evolution and structural characterization of a simvastatin synthase. Chemistry and Biology,2009,16(10):10641074. 
[19] Fujii T,Narikawa T,Sumisa F,et al. Production of alpha,omegaalkanediols using Escherichia coli expressing a cytochrome p450 from Acinetobacter sp OC4. Bioscience Biotechnology and Biochemistry,2006,70(6): 13791385. 
[20] Shrestha P,Oh T J,Sohng J K. Designing a wholecell biotransformation system in Escherichia coli using cytochrome P450 from Streptomyces peucetius. Biotechnology Letters,2008,30(6): 11011106. 
[21] Kau P B,BringerMeyer S,Sahm H. Dmannitol formation from Dglucose in a wholecell biotransformation with recombinant Escherichia coli. Applied Microbiology and Biotechnology,2005,69(4): 397403. 
[22] Cirino P C,Chin J W,Ingram L O. Engineering Escherichia coli for xylitol production from glucosexylose mixtures. Biotechnology and Bioengineering, 2006,95(6):11671176. 
[23] Overhage J,Steinbuchel A,Priefert H. Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli. Applied and Environmental Microbiology,2003, 69(11): 65696576. 
[24] Payne M S,Petrillo K L,Gavagan J E,et al. Highlevel production of spinach glycolate oxidase in the methylotrophic yeast Pichia pastoris: Engineering a biocatalyst. Gene,1995,167(12): 215219. 
[25] Sauerzapfe B,Engels L,Elling L. Broadening the biocatalytic properties of recombinant sucrose synthase 1 from potato (Solanum tuberosum L.) by expression in Escherichia coli and Saccharomyces cerevisiae. Enzyme and Microbial Technology ,2008,43: 289–296. 
[26] Honda K,Tsuboi H,Minetoki T,et al. Expression of the Fusarium oxysporum lactonase gene in Aspergillus oryzae: molecular properties of the recombinant enzyme and its application. Applied Microbiology and Biotechnology, 2005,66(5): 520526. 
[27] Chun H K,Ohnishi Y,Shindo K,et al. Biotransformation of flavone and flavanone by Streptomyces lividans cells carrying shuffled biphenyl dioxygenase genes. Journal of Molecular Catalysis BEnzymatic,2003,21(3): 113121. 
[28] StutzmanEngwall K,Conlon S,Fedechko R,et al. Semisynthetic DNA shuffling of aveC leads to improved industrial scale production of doramectin by Streptomyces avermitilis. Metabolic Engineering,2005,7(1): 2737. 
[29] Jager S,Jekel PA,Janssen D B. Hybrid penicillin acylases with improved properties for synthesis of betalactam antibiotics. Enzyme and Microbial Technology,2007,40(5): 13351344. 
[30] Gillam E M J. Extending the capabilities of nature’s most versatile catalysts: Directed evolution of mammalian xenobioticmetabolizing P450s. Archives of Biochemistry and Biophysics,2007,464(2): 176186. 
[31] Tyo K E,Alper H S,Stephanopoulos G N. Expanding the metabolic engineering toolbox: more options to engineer cells. Trends in Biotechnology, 2007,25(3): 132137. 
[32] Kau PB,BringerMeyer S,Sahm H. Metabolic engineering of Escherichia coli:construction of an efficient biocatalyst for Dmannitol formation in a wholecell biotransformation. Applied Microbiology and Biotechnology,2004,64:333339. 
[33] Nguyen H T T,Nevoigt E. Engineering of Saccharomyces cerevisiae for the production of dihydroxyacetone (DHA) from sugars: A proof of concept. Metabolic Engineering,2009,11(6):335346. 
[34] Mojzita D,Wiebe M,Hilditch S,et al. Metabolic engineering of fungal strains for conversion of Dgalacturonate to mesogalactarate. Applied and Environmental Microbiology,2010,76(1):169175. 
[35] Stafford D E,Yanagimachi K S,Lessard PA,et al. Optimizing bioconversion pathways through systems analysis and metabolic engineering. Proceedings of the National Academy of Sciences of the United States of America, 2002,99(4): 18011806. 
[36] Chung K B S,Lee D Y. Fluxsum analysis: a metabolitecentric approach for understanding the metabolic network. BMC Systems Biology,2009,117(3):110. 
[37] Cakir T,Arga K Y,Altintas M M,et al. Flux analysis of recombinant Saccharomyces cerevisiae YPBG utilizing starch for optimal ethanol production. Process Biochemistry,2004,39(12): 20972108. 
[38] Atsumi S,Cann A F,Connor M R,et al. Metabolic engineering of Escherichia coli for 1butanol production. Metabolic Engineering,2008,10(6):305311. 
[39] Mukherji S,van Oudenaarden A. Synthetic biology: understanding biological design from synthetic circuits. Nature Reviews Genetics,2009,10(12):859871. 
[40] Puchalka J,Oberhardt M A,Godinho M,et al. Genomescale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. Plos Computational Biology, 2008,4(10):118.

[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[3] LI Yuan-yuan,LI Yan,CAO Ying-xiu,SONG Hao. Research and Strategies of Flavins-mediated Extracellular Electron Transfer[J]. China Biotechnology, 2021, 41(10): 89-99.
[4] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[5] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.
[6] LIU Di,ZHANG Hong-chun. Advances in Genetically Engineered Animal Models of Chronic Obstructive Pulmonary Disease[J]. China Biotechnology, 2020, 40(4): 59-68.
[7] SUN Qing,LIU De-hua,CHEN Zhen. Research Progress of Methanol Utilization and Bioconversion[J]. China Biotechnology, 2020, 40(10): 65-75.
[8] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[9] CHEN Chun-lin,QIN Song,SONG Wan-lin,LIU Zhi-dan,LIU Zheng-yi. Progress on Biological Preparation of Alginate Oligosaccharides[J]. China Biotechnology, 2020, 40(10): 85-95.
[10] Shu-xia MA,Ling ZHANG,Jin-fei YAN,Song YOU. Study on the Synthesis of Polyunsaturated Fatty Acids by FattyAcid Synthase Pathway of Schizochytrium sp.[J]. China Biotechnology, 2018, 38(9): 27-34.
[11] Xue-ting HE,Min-hua ZHANG,Jie-fang HONG,Yuan-yuan MA. Research Progress on Butanol-Tolerant Strain and Tolerance Mechanism of Escherichia coli[J]. China Biotechnology, 2018, 38(9): 81-87.
[12] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.
[13] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.
[14] Suo-wei WU,Xiang-yuan WAN. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production[J]. China Biotechnology, 2018, 38(1): 78-87.
[15] GAO Jiao-jiao, YANG Shu-lin. Advances in Optimization of Hyaluronic Acid Production by Genetic Engineering Technology[J]. China Biotechnology, 2017, 37(8): 72-77.