Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2009, Vol. 29 Issue (04): 56-60    DOI:
    
cyclohydrolase/Phosphoribosyl-ATP pyrophosphatase In Histidine Biosynthesis Pathway From Shigella flexneri 2a
Download: HTML   PDF(918KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  The metabolic pathway of histidine biosynthesis is significant for its various gene organizations and protein structures. HisI/E gene, that can express a bifunctional phosphoribosyl-AMP-cyclohydrolase/phosphoribosyl-ATP-pyrophosphatase protein, which could catalyze the second and the third step in the histidine biosynthetic pathway, has been successfully cloned by using Shigella flexneri 2α(strain 301) genomic DNA as PCR temple. The protein was soluble expressed in pET22b vector, and purified by Ni-NTA cartridge and Superdex75 molecular filter. Then the soluble highly purified protein was characterized by preliminary crystal analysis, including dynamic light scattering, Analytical Ultracentrifugation and initially screened with Crystal Screens I and II and Index Screen (Hampton Research). The buffer of 50mmol/L Tris–HCl, pH 10.0, 300mmol/L NaCl, 0.05mmol/L ZnCl2 is the best solution for both the maintenance of oligomerization state of the protein and crystallization.

Key wordshistidine biosynthesis pathway;bifunctional protein;phosphoribosyl-AMP cyclohydrolase/phosphoribosyl-ATP pyrophosphatase;expressing and purification     
Received: 06 November 2008      Published: 27 April 2009
Cite this article:

. cyclohydrolase/Phosphoribosyl-ATP pyrophosphatase In Histidine Biosynthesis Pathway From Shigella flexneri 2a. China Biotechnology, 2009, 29(04): 56-60.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2009/V29/I04/56

[1] Stepansky A, Leustek T. Histidine biosynthesis in plants. Amino Acids, 2006,30:127~142 [2] Alifano P, Fani R, Lio′ P, et al. Histidine biosynthetic pathway and genes:structure, regulation, and evolution. Microbiol Rev 1996,60:44~69 [3] Winkler M E. Biosynthesis of histidine. In Neidhardt F C, Ingraham J L, Low K B, et al. Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, Vol I. Washington, DC:American Society of Microbiology,1996.395~411 [4] Carlomagno M S, Chiariotti L, Alifano P, et al. Structure and function of the Salmonella typhimurium and Escherichia coli K12 histidine operons. J Mol Biol,1988, 203, 585~606 [5] Singh B K. Plant Amino Acids.New York:Marcel Dekker, 1999 [6] Sivaraman J, Rebecca S Myers, Lorena Boju.Crystal structure of Methanobacterium thermoautotrophicum phosphoribosyl-AMP Cyclohydrolase HisI. Biochemistry,2005, 10071~10080 [7] D′Ordine,Klem R L. N1(5′-phosphoribosyl)adenosine-5′-monophosphate cyclohydrolase: purification and characterization of a unique metalloenzyme. Biochemistry, 1999, 38:1537~1546 [8] Mary Haak-Frendscho, Zsuzsa Darvas, Hargita Hegyesi, et al. Histidine decarboxylase expression in human melanoma. Journal of Investigative Dermatology, 2000, 115:345~352 [9] Joshua A V Blodgett, Paul M Thomas, Gongyong Li, et al. Unusual transformations in the biosynthesis of the antibiotic phosphinothricin tripeptide. Nature Chemical Biology, 2007, 3:480~485 [10] Jochen Kuper, Catharina Doenges, Matthias Wilmanns. Twofold repeated (βα)4 halfbarrels may provide a molecular tool for dual substrate specificity. EMBO Reports, 2005, 6:134~139 [11] Arkadiusz Malkus,KuangRen Chung,ChungJan Chang,et al. The Trifunctional histidine biosynthesis gene (his) in wheat Stagonospora nodorum blotch pathogen, Phaeosphaeria nodorum. Plant Pathology Bulletin, 2006, 15:55~61 [12] Brevet A. Zinc-dependent synthesis of 5′,5′-diadenosine tetraphosphate by shee Pliver lysyl- and phenylalanyl-tRNA synthetases. J Biol Chem, 1982, 257:14611~14615
No related articles found!