Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (8): 86-99    DOI: 10.13523/j.cb.2302010
    
Advances in the Biosynthesis of Nonribosomal Peptide
JIANG Ji-peng,SUN Ya-nan,ZHANG Chen-chen,HAO Man,LI Xiang-xun,LIU Fu-feng,WANG Hai-kuan,LU Fu-ping,ZHANG Hui-tu**()
Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
Download: HTML   PDF(1279KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Nonribosomal peptides are a class of small molecule secondary metabolites synthesized by a variety of microorganisms through nonribosomal peptide synthetase and other catalytic synthesis. With antibacterial, antitumor, immunosuppressive and other biological activities, they are an important class of microbial drugs, with high clinical application value. This paper reviews the biological functions, synthesis and assembly mechanisms of small molecule peptides, as well as the recent progress in engineering modifications, and discusses future research directions for the efficient synthesis of more types of small molecule peptides through combinatorial biosynthesis.



Key wordsNonribosomal peptide      Nonribosomal peptide synthetase      Multi-enzyme complex      Combinatorial biosynthesis     
Received: 06 February 2023      Published: 05 September 2023
ZTFLH:  Q819  
Cite this article:

JIANG Ji-peng, SUN Ya-nan, ZHANG Chen-chen, HAO Man, LI Xiang-xun, LIU Fu-feng, WANG Hai-kuan, LU Fu-ping, ZHANG Hui-tu. Advances in the Biosynthesis of Nonribosomal Peptide. China Biotechnology, 2023, 43(8): 86-99.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2302010     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I8/86

Fig.1 Structures of several nonribosomal peptides
名称 类型 来源 活性 参考文献
万古霉素 糖肽类 Amycolatopsis orientalis ATCC 19795 抗细菌 [10]
博来霉素 糖肽类 Streptomyces verticillus ATCC 31307 抗肿瘤 [11]
奥利万星 糖肽类 Amycolatopsis orientalis ATCC 19795 抗细菌 [12]
特拉万星 糖肽类 Amycolatopsis orientalis ATCC 19795 抗细菌 [13]
达托霉素 脂肽类 Streptomyces roseosporus ATCC 31568 抗细菌 [14]
放线菌素D 脂肽类 Streptomyces chrysomallus ATCC 11523 抗肿瘤 [15]
恩拉霉素 脂肽类 Streptomyces fungicidicus ATCC 27432 抗细菌 [16]
多黏菌素B 脂肽类 Bacillus polymyxa ATCC 842 抗细菌 [17]
短杆菌素 脂肽类 Brevibacillus laterosporus ATCC 64 抗细菌、抗真菌 [18]
雷莫拉宁 脂肽类 Actinoplanes sp. ATCC 33076 抗细菌 [19]
环孢菌素A 环肽类 Tolypocladium inflatum ATCC 34921 免疫抑制 [8]
杆菌肽 环肽类 Bacillus licheniformis ATCC 14580 抗细菌 [20]
短杆菌肽S 环肽类 Bacillus brevis ATCC 8246 抗细菌、抗真菌 [21]
普那霉素 环肽类 Streptomyces pristinaespiralis ATCC 25486 抗细菌 [22]
罗米地辛 环肽类 Chromobacterium violaceum ATCC 31532 抗肿瘤 [23]
林可霉素 线性肽类 Streptomyces lincolnensis ATCC 25466 抗细菌 [24]
短杆菌肽A 线性肽类 Bacillus brevis ATCC 8246 抗细菌、抗疟疾 [25]
伊短菌素A 线性肽类 Bacillus brevis ATCC 8246 抗细菌、抗真菌 [26]
Table 1 Common reported nonribosomal peptide drugs
Fig.2 Schematic diagram of basic structure and biosynthesis mechanism of NRPS
Fig.3 NRPS pathway in the biosynthesis of Ramoplanin
Fig.4 Yersiniabactin and NRPS involved in its biosynthesis
Fig.5 NRPS pathway in the biosynthesis of Myxochromide S
涉及NRPS 具体手段 结果 参考文献
Surfactin 合成酶SrfA-C 异源替换A域 获得系列7位氨基酸取代的 Surfactin 类似物,但产量均明显下降 [36]
Gramicidin S 合成酶 替换A域的亚结构域FSD 改变了起始模块A域的底物特异性,但未充分证明重组NRPS是否有活性 [37]
Enduracidin 合成酶 用CRISPR-Cas9技术替换FSD 得到了一些产量接近天然NRPS的新型脂肽 [38]
Andrimid合成酶 对“特异性代码”进行饱和突变 高通量筛选得到4种新型Andrimid类似物 [39]
Tyrocidine合成酶 采用饱和突变的定向进化手段 A域产生40 000倍的α / β特异性转变,且能以近似原酶的效率合成含β-氨基酸的NRP [40]
Enterobactin合成酶 对芳基酸特异识别A域进行单点突变 A域的底物结合口袋扩大,可以活化多种经过修饰的非天然芳基酸 [41]
Thiocoraline合成酶 在A域保守特征序列间插入M域 得到具有腺苷化、N-甲基化和S-甲基化三种活性的A域 [42]
Echinomycin合成酶 在A域保守特征序列间插入2个连续的M域 A域的腺苷化活性被保留,但以两种顺序插入M结构域均未引起预期的甲基化能力增加 [43]
Pyoverdine合成酶PvdD 异源替换起始模块的C-A域 获得了少数几个产Pyoverdine及其类似物的重组NRPS,但与原酶相比合成效率极度下降 [44]
Tyrocidine合成酶 以C-A-T为基本单元将多个模块进行重组 获得了预期三肽产物 [45]
Ambactin等的生物合成酶 定义A-T-C作为XU交换单元进行多结构域替换 获得的重组NRPS可以合成新型NRP,甚至有些NRP的产量较野生型有很大提升 [46]
Ambactin等的生物合成酶 定义CAsub-A-T-CDsub作为XUC交换单元进行多模块重组替换 解决了杂合NRPS上下游C域和A域不适配的问题,使某些肽的产量提高1.6倍 [47]
Plipastatin合成酶 对通信域进行氨基酸定点突变 获得了具有抗微生物活性的新型多肽产物 [48]
Rhabdopeptide/Xenortide(RXP)合成酶 替换通信域间相互作用的关键残基 获得了不同于原产物链长的RXP [49]
Rhabdopeptide/Xenortide(RXP)合成酶 用两种不同NRPS的通信域替换RXP合成酶的通信域 获得了特定链长和结构的新型RXP [50]
Xefoampeptide合成酶
XfpS
引入天然通信域将XfpS拆分成2到3个人工NRPS亚单元 得到的某些拆分XfpS比完整野生型酶肽产量更高 [51]
Gramicidin S合成酶GrsB 引入天然通信域拆分GrsB 拆分蛋白质异源表达的产率和纯度得到了提高 [52]
Xefoampeptide合成酶
XfpS
利用“合成拉链”将不同来源的NRPS片段结合 合成了滴度高达220 mg/L的新肽 [53]
GameXPeptide(GXP)合成酶GxpS 利用合成拉链将NRPS分成多达3个亚基 构建了不同的双模块和三模块NRPS文库,产生了49个多肽、多肽衍生物和从头合成肽,滴度高达145 mg/L [54]
Table 2 Research progress of partial NRPS engineering
[1]   李海岩, 麻新妍, 薛永常. 非核糖体肽合成酶硫酯酶结构域研究进展. 中国抗生素杂志, 2021, 46(12):1073-1077.
[1]   Li H Y, Ma X Y, Xue Y C. The research progress of thioesterase domain in non-ribosomal peptide synthetase. Chinese Journal of Antibiotics, 2021, 46(12):1073-1077.
[2]   Gajdács M. The continuing threat of methicillin-resistant Staphylococcus aureus. Antibiotics (Basel, Switzerland), 2019, 8(2): 52.
[3]   Turner N A, Sharma-Kuinkel B K, Maskarinec S A, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nature Reviews Microbiology, 2019, 17(4): 203-218.
doi: 10.1038/s41579-018-0147-4
[4]   Lakhundi S, Zhang K Y. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clinical Microbiology Reviews, 2018, 31(4): e00020-e00018.
[5]   Czepiel J, Dróżdż M, Pituch H, et al. Clostridium difficile infection: review. European Journal of Clinical Microbiology & Infectious Diseases, 2019, 38(7): 1211-1221.
[6]   Balsells E, Shi T, Leese C, et al. Global burden of Clostridium difficile infections: a systematic review and meta-analysis. Journal of Global Health, 2019, 9(1): 010407.
doi: 10.7189/jogh.09.010407
[7]   Murray V, Chen J K, Chung L H. The interaction of the metallo-glycopeptide anti-tumour drug bleomycin with DNA. International Journal of Molecular Sciences, 2018, 19(5):29.
doi: 10.3390/ijms19020029
[8]   Patocka J, Nepovimova E, Kuca K, et al. Cyclosporine A: chemistry and toxicity——a review. Current Medicinal Chemistry, 2021, 28(20): 3925-3934.
[9]   张常雄, 成颖, 周四元. 环孢菌素A制剂的研究进展. 西北药学杂志, 2018, 33(1): 136-139.
[9]   Zhang C X, Cheng Y, Zhou S Y. Advances in cyclosporine A preparation. Northwest Pharmaceutical Journal, 2018, 33(1): 136-139.
[10]   Ishikawa K, Shirakawa R, Takano D, et al. Knockout of ykcB, a putative glycosyltransferase, leads to reduced susceptibility to vancomycin in Bacillus subtilis. Journal of Bacteriology, 2022, 204(12): 14.
[11]   Zheng Y Z, Cui J X, Wang Y L, et al. The structure-function relationship of human bleomycin hydrolase: mutation of a cysteine protease into a serine protease. Chembiochem: a European Journal of Chemical Biology, 2022, 23(12): e202200186.
[12]   Carvalhaes C G, Sader H S, Streit J M, et al. Activity of oritavancin against gram-positive pathogens causing bloodstream infections in the United States over 10 years: focus on drug-resistant enterococcal subsets (2010-2019). Antimicrobial Agents and Chemotherapy, 2022, 66(2):6.
[13]   Kiarostami K, Battaglini D, Motos A, et al. The efficacy of telavancin in comparison to linezolid on endotracheal tube biofilm in pigs with MRSA pneumonia10.01: Respiratory infections and bronchiectasis. European Respiratory Society, 2022, 60:2.
[14]   Heidary M, Khosravi A D, Khoshnood S, et al. Daptomycin. Journal of Antimicrobial Chemotherapy, 2018, 73(1): 1-11.
doi: 10.1093/jac/dkx349
[15]   Yong D J, Li Y, Gong K, et al. Biocontrol of strawberry gray mold caused by Botrytis cinerea with the termite associated Streptomyces sp. sdu1201 and actinomycin D. Frontiers in Microbiology, 2022, 13: 1051730.
[16]   Zhong T H, Zeng X M, Zhang Y H, et al. Discovery, gene modification, and optimization of fermentation of an enduracidin-producing strain. Journal of Asian Natural Products Research, 2018, 20(7): 633-648.
doi: 10.1080/10286020.2018.1451517
[17]   崔阿龙, 胡辛欣, 高岩, 等. 新型多黏菌素B衍生物的设计合成及生物功能研究. 药学学报, 2019, 54(11): 2031-2038.
[17]   Cui A L, Hu X X, Gao Y, et al. Design, synthesis and biological function of novel polymyxin B derivatives. Acta Pharmaceutica Sinica, 2019, 54(11): 2031-2038.
[18]   王晓洁, 孟凡强, 周立邦, 等. 利用基因组改组技术提高短杆菌素产量及其培养条件优化. 中国生物工程杂志, 2021, 41(8): 42-51.
[18]   Wang X J, Meng F Q, Zhou L B, et al. Breeding of brevibacillin producing strain by genome shuffling and optimization of culture conditions. China Biotechnology, 2021, 41(08): 42-51.
[19]   Morgan K T, Zheng J, McCafferty D G. Discovery of six ramoplanin family gene clusters and the lipoglycodepsipeptide chersinamycin. ChemBioChem, 2021, 22(1): 176-185.
doi: 10.1002/cbic.v22.1
[20]   Buijs N, Vlaming H C, van Haren M J, et al. Synthetic studies with bacitracin A and preparation of analogues containing alternative zinc binding groups. ChemBioChem, 2022, 23(24): e202200547.
doi: 10.1002/cbic.202200547 pmid: 36287040
[21]   Rathman B M, Allen J L, Shaw L N, et al. Synthesis and biological evaluation of backbone-aminated analogues of gramicidin S. Bioorganic & Medicinal Chemistry Letters, 2020, 30(15): 127283.
doi: 10.1016/j.bmcl.2020.127283
[22]   Aleid S M, Hamad S H, Delaunay S, et al. Pristinamycin production using Streptomyces pristinaespiralis and date sirup as substrate-process modeling, optimization, and scale-up. Preparative Biochemistry & Biotechnology, 2022, 52(9): 1044-1050.
[23]   Okubo K, Miyai K, Kato K, et al. Simvastatin-romidepsin combination kills bladder cancer cells synergistically. Translational Oncology, 2021, 14(9): 101154.
doi: 10.1016/j.tranon.2021.101154
[24]   Li J, Wang N, Tang Y Q, et al. Developmental regulator BldD directly regulates lincomycin biosynthesis in Streptomyces lincolnensis. Biochemical and Biophysical Research Communications, 2019, 518(3): 548-553.
doi: 10.1016/j.bbrc.2019.08.079
[25]   Fang S T, Huang S H, Yang C H, et al. Effects of calcium ions on the antimicrobial activity of gramicidin A. Biomolecules, 2022, 12(12): 1799.
doi: 10.3390/biom12121799
[26]   张翠央, 杜杰, 陈武, 等. 伊短菌素A标品的制备及HPLC定量分析. 中国抗生素杂志, 2022, 47(10):1070-1076.
[26]   Zhang C Y, Du J, Chen W, et al. Preparation of edeine A standard and its quantitative determination by HPLC. Chinese Journal of Antibiotics, 2022, 47(10):1070-1076.
[27]   Alvarez F, Castro M, Príncipe A, et al. The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP 23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. Journal of Applied Microbiology, 2012, 112(1): 159-174.
doi: 10.1111/j.1365-2672.2011.05182.x pmid: 22017648
[28]   Arrebola E, Jacobs R, Korsten L. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology, 2010, 108(2): 386-395.
doi: 10.1111/j.1365-2672.2009.04438.x pmid: 19674188
[29]   Fan H Y, Ru J J, Zhang Y Y, et al. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiological Research, 2017, 199: 89-97.
doi: 10.1016/j.micres.2017.03.004
[30]   韩梦瑶, 陈晶晶, 乔云明, 等. 非核糖体肽合成酶研究进展. 药学学报, 2018, 53(7): 1080-1089.
[30]   Han M Y, Chen J J, Qiao Y M, et al. Advances in the nonribosomal peptide synthetases. Acta Pharmaceutica Sinica, 2018, 53(7): 1080-1089.
[31]   王辰, 徐玉泉. 非核糖体肽合成酶工程改造研究进展. 生物工程学报, 2021, 37(6): 1845-1857.
[31]   Wang C, Xu Y Q. Advances in engineering non-ribosomal peptide synthetase. Chinese Journal of Biotechnology, 2021, 37(6): 1845-1857.
[32]   潘海学, 唐功利. 非核糖体肽合成酶催化的非常规装配模式. 微生物学通报, 2013, 40(10): 1783-1795.
[32]   Pan H X, Tang G L. Unconventional assembling ways catalyzed by nonribosomal peptide synthetases. Microbiology China, 2013, 40(10): 1783-1795.
[33]   魏小雅, 刘欣, 于宏伟, 等. 微生物非核糖体多肽的合成基因簇挖掘及其合成研究进展. 中国抗生素杂志, 2021, 46(5): 353-361.
[33]   Wei X Y, Liu X, Yu H W, et al. Advances in biosynthetic gene cluster mining and biosynthesis of microbial non-ribosomal. Chinese Journal of Antibiotics, 2021, 46(5): 353-361.
[34]   McCafferty D G, Cudic P, Frankel B A, et al. Chemistry and biology of the ramoplanin family of peptide antibiotics. Peptide Science, 2002, 66(4): 261-284.
[35]   Keating T A, Suo Z C, Ehmann D E, et al. Selectivity of the yersiniabactin synthetase adenylation domain in the two-step process of amino acid activation and transfer to a holo-carrier protein domain. Biochemistry, 2000, 39(9): 2297-2306.
pmid: 10694396
[36]   Stachelhaus T, Schneider A, Marahiel M A. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science, 1995, 269(5220): 69-72.
pmid: 7604280
[37]   Kries H, Niquille D L, Hilvert D. A subdomain swap strategy for reengineering nonribosomal peptides. Chemistry & Biology, 2015, 22(5): 640-648.
doi: 10.1016/j.chembiol.2015.04.015
[38]   Thong W L, Zhang Y X, Zhuo Y, et al. Gene editing enables rapid engineering of complex antibiotic assembly lines. Nature Communications, 2021, 12(1): 1-10.
doi: 10.1038/s41467-020-20314-w
[39]   Evans B, Chen Y Q, Metcalf W, et al. Directed evolution of the nonribosomal peptide synthetase AdmK generates new andrimid derivatives in vivo. Chemistry & Biology, 2011, 18(5): 601-607.
doi: 10.1016/j.chembiol.2011.03.008
[40]   Niquille D L, Hansen D A, Mori T, et al. Nonribosomal biosynthesis of backbone-modified peptides. Nature Chemistry, 2018, 10(3): 282-287.
doi: 10.1038/nchem.2891 pmid: 29461527
[41]   Ishikawa F, Miyanaga A, Kitayama H, et al. An engineered aryl acid adenylation domain with an enlarged substrate binding pocket. Angewandte Chemie International Edition, 2019, 58(21): 6906-6910.
[42]   Lundy T A, Mori S, Garneau-Tsodikova S. Probing the limits of interrupted adenylation domains by engineering a trifunctional enzyme capable of adenylation, N-, and S-methylation. Organic & Biomolecular Chemistry, 2019, 17(5): 1169-1175.
[43]   Lundy T A, Mori S, Garneau-Tsodikova S. Lessons learned in engineering interrupted adenylation domains when attempting to create trifunctional enzymes from three independent monofunctional ones. RSC Advances, 2020, 10(56): 34299-34307.
doi: 10.1039/d0ra05490a pmid: 35519055
[44]   Calcott M J, Owen J G, Lamont I L, et al. Biosynthesis of novel pyoverdines by domain substitution in a nonribosomal peptide synthetase of Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2014, 80(18): 5723-5731.
doi: 10.1128/AEM.01453-14 pmid: 25015884
[45]   Mootz H D, Schwarzer D, Marahiel M A. Construction of hybrid peptide synthetases by module and domain fusions. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(11): 5848-5853.
[46]   Bozhüyük K A J, Fleischhacker F, Linck A, et al. De novo design and engineering of non-ribosomal peptide synthetases. Nature Chemistry, 2018, 10(3): 275-281.
doi: 10.1038/nchem.2890 pmid: 29461518
[47]   Bozhüyük K A J, Linck A, Tietze A, et al. Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains. Nature Chemistry, 2019, 11(7): 653-661.
doi: 10.1038/s41557-019-0276-z pmid: 31182822
[48]   Liu H X, Gao L, Han J Z, et al. Biocombinatorial synthesis of novel lipopeptides by COM domain-mediated reprogramming of the plipastatin NRPS complex. Frontiers in Microbiology, 2016, 7: 1801.
pmid: 27909427
[49]   Hacker C, Cai X F, Kegler C, et al. Structure-based redesign of docking domain interactions modulates the product spectrum of a rhabdopeptide-synthesizing NRPS. Nature Communications, 2018, 9(1): 1-11.
doi: 10.1038/s41467-017-02088-w
[50]   Cai X F, Zhao L, Bode H B. Reprogramming promiscuous nonribosomal peptide synthetases for production of specific peptides. Organic Letters, 2019, 21(7): 2116-2120.
doi: 10.1021/acs.orglett.9b00395 pmid: 30859835
[51]   Kegler C, Bode H B. Artificial splitting of a non-ribosomal peptide synthetase by inserting natural docking domains. Angewandte Chemie International Edition, 2020, 59(32): 13463-13467.
[52]   Pourmasoumi F, De S, Peng H Y, et al. Proof-reading thioesterase boosts activity of engineered nonribosomal peptide synthetase. ACS Chemical Biology, 2022, 17(9): 2382-2388.
doi: 10.1021/acschembio.2c00341 pmid: 36044980
[53]   Bozhueyuek K A J, Watzel J, Abbood N, et al. Synthetic zippers as an enabling tool for engineering of non-ribosomal peptide synthetases. Angewandte Chemie International Edition, 2021, 60(32): 17531-17538.
[54]   Abbood N, Duy Vo T, Watzel J, et al. Type S non-ribosomal peptide synthetases for the rapid generation of tailormade peptide libraries. Chemistry: A European Journal, 2022, 28(26): e202103963.
[55]   Conti E, Stachelhaus T, Marahiel M A, et al. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. The EMBO Journal, 1997, 16(14): 4174-4183.
doi: 10.1093/emboj/16.14.4174
[56]   Patel H M, Walsh C T. In vitro reconstitution of the Pseudomonas aeruginosa nonribosomal peptide synthesis of pyochelin: characterization of backbone tailoring thiazoline reductase and N-methyltransferase activities. Biochemistry, 2001, 40(30): 9023-9031.
pmid: 11467965
[57]   Hornbogen T, Riechers S P, Prinz B, et al. Functional characterization of the recombinant N-methyltransferase domain from the multienzyme enniatin synthetase. ChemBioChem, 2007, 8(9): 1048-1054.
pmid: 17471480
[58]   Schwarzer D, Finking R, Marahiel M A. Nonribosomal peptides: from genes to products. Natural Product Reports, 2003, 20(3): 275-287.
pmid: 12828367
[59]   Labby K J, Watsula S G, Garneau-Tsodikova S. Interrupted adenylation domains: unique bifunctional enzymes involved in nonribosomal peptide biosynthesis. Natural Product Reports, 2015, 32(5): 641-653.
doi: 10.1039/c4np00120f pmid: 25622971
[60]   Lundy T A, Mori S, Thamban Chandrika N, et al. Characterization of a unique interrupted adenylation domain that can catalyze three reactions. ACS Chemical Biology, 2020, 15(1): 282-289.
doi: 10.1021/acschembio.9b00929 pmid: 31887013
[61]   Belshaw P J, Walsh C T, Stachelhaus T. Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. Science, 1999, 284(5413): 486-489.
pmid: 10205056
[62]   Ehmann D E, Trauger J W, Stachelhaus T, et al. Aminoacyl-SNACs as small-molecule substrates for the condensation domains of nonribosomal peptide synthetases. Chemistry & Biology, 2000, 7(10): 765-772.
doi: 10.1016/S1074-5521(00)00022-3
[63]   Ackerley D F, Lamont I L. Characterization and genetic manipulation of peptide synthetases in Pseudomonas aeruginosa PAO1 in order to generate novel pyoverdines. Chemistry & Biology, 2004, 11(7): 971-980.
doi: 10.1016/j.chembiol.2004.04.014
[64]   Tanovic A, Samel S A, Essen L O, et al. Crystal structure of the termination module of a nonribosomal peptide synthetase. Science, 2008, 321(5889): 659-663.
doi: 10.1126/science.1159850 pmid: 18583577
[65]   Süssmuth R D, Mainz A. Nonribosomal peptide synthesis:principles and prospects. Angewandte Chemie International Edition, 2017, 56(14): 3770-3821.
[66]   Kaniusaite M, Tailhades J, Kittilä T, et al. Understanding the early stages of peptide formation during the biosynthesis of teicoplanin and related glycopeptide antibiotics. The FEBS Journal, 2021, 288(2): 507-529.
doi: 10.1111/febs.v288.2
[67]   Kaniusaite M, Goode R J A, Schittenhelm R B, et al. The diiron monooxygenase CmlA from chloramphenicol biosynthesis allows reconstitution of β-hydroxylation during glycopeptide antibiotic biosynthesis. ACS Chemical Biology, 2019, 14(12): 2932-2941.
doi: 10.1021/acschembio.9b00862 pmid: 31774267
[68]   Kaniusaite M, Tailhades J, Marschall E A, et al. A proof-reading mechanism for non-proteinogenic amino acid incorporation into glycopeptide antibiotics. Chemical Science, 2019, 10(41): 9466-9482.
doi: 10.1039/c9sc03678d pmid: 32055321
[69]   Zhang X Y, Zhang H, Guan S S, et al. Studies on the selectivity mechanism of wild-type E. coli thioesterase ’TesA and its mutants for medium- and long-chain acyl substrates. Catalysts, 2022, 12(9): 1026.
doi: 10.3390/catal12091026
[70]   Yu Q, Xie L F, Li Y L, et al. Exploring the molecular basis of substrate and product selectivities of nocardicin bifunctional thioesterase. Interdisciplinary Sciences: Computational Life Sciences, 2022, 14(1): 233-244.
doi: 10.1007/s12539-021-00482-z
[71]   Horsman M E, Hari T P A, Boddy C N. Polyketide synthase and non-ribosomal peptide synthetase thioesterase selectivity: logic gate or a victim of fate? Natural Product Reports, 2016, 33(2): 183-202.
doi: 10.1039/c4np00148f pmid: 25642666
[72]   Hahn M, Stachelhaus T. Selective interaction between nonribosomal peptide synthetases is facilitated by short communication-mediating domains. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44): 15585-15590.
[73]   Hahn M, Stachelhaus T. Harnessing the potential of communication-mediating domains for the biocombinatorial synthesis of nonribosomal peptides. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(2): 275-280.
[74]   Watzel J, Hacker C, Duchardt-Ferner E, et al. A new docking domain type in the peptide-antimicrobial-Xenorhabdus peptide producing nonribosomal peptide synthetase from Xenorhabdus bovienii. ACS Chemical Biology, 2020, 15(4): 982-989.
doi: 10.1021/acschembio.9b01022 pmid: 32167274
[75]   Cai X F, Nowak S, Wesche F, et al. Entomopathogenic bacteria use multiple mechanisms for bioactive peptide library design. Nature Chemistry, 2017, 9(4): 379-386.
doi: 10.1038/nchem.2671 pmid: 28338679
[76]   Muchiri R, Walker K D. Paclitaxel biosynthesis: adenylation and thiolation domains of an NRPS TycA PheAT module produce various arylisoserine CoA thioesters. Biochemistry, 2017, 56(10): 1415-1425.
doi: 10.1021/acs.biochem.6b01188 pmid: 28230972
[1] LIU Ba-Ning, CANG Ji-Yong, ZHANG Hua. Manufacturing Process of Daptomycin and Combinatorial Biosynthesis of Derivatives[J]. China Biotechnology, 2010, 30(03): 119-124.