Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (2/3): 1-14    DOI: 10.13523/j.cb.2301001
    
Analysis of R&D Structure of New Drug Delivery Systems
HAN Jia,ZHANG Bo-wen,MAO Kai-yun**()
Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031,China
Download: HTML   PDF(773KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Drug delivery is a method or process for achieving therapeutic effects in humans or animals by using specific means to effectively deliver active pharmaceutical ingredients to target sites. The delivery systems play important roles in controlling the speed of drug release, targeting drug delivery to the site, maintaining drug stability and biocompatibility. In recent years, with the advancements of related fields such as pharmaceutical science, material science, and biomedicine, the development of technologies from nanoscale to cell scale and smart targeted drug delivery has brought tremendous changes in the field of drug delivery systems, The research investment and market share of drug delivery systems continue to grow rapidly. This paper elaborated the delivery mechanism and characteristics of different drug delivery systems, systematically analyzed the main research progresses and enterprise competition pattern of new drug delivery system technologies, and discussed the clinical transformation potential and application prospects of related technologies, in order to provide references for the choice of R&D direction selection and decision-making of related companies.



Key wordsDrug delivery system      Pharmaceutical preparations technique      Technology platform      Current status of R & D     
Received: 01 January 2023      Published: 31 March 2023
ZTFLH:  Q819  
Corresponding Authors: **Kai-yun MAO     E-mail: kymao@sinh.ac.cn
Cite this article:

HAN Jia, ZHANG Bo-wen, MAO Kai-yun. Analysis of R&D Structure of New Drug Delivery Systems. China Biotechnology, 2023, 43(2/3): 1-14.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2301001     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I2/3/1

分类 关键细分技术
靶向递送技术
主动靶向递送技术
被动靶向递送技术
高分子聚合物递送技术 储层型高分子聚合物药物递送系统
整体型高分子聚合物药物递送系统
超支化高分子聚合物载药系统
乳化递送技术 脂质体递送技术
脂肪乳递送技术
纳米药物递送技术 超分子自主组装纳米递送体系
仿生纳米载体
金属和无机纳米粒子
眼科纳米递送系统
仿生型药物递送系统 细胞膜递送技术
仿病毒纳米颗粒
蛋白质或多肽递送技术 蛋白质-药物偶联物
多肽-药物偶联物
核酸药物递送技术 病毒载体
脂质体、聚合物纳米递送技术等
GalNAc递送系统
外泌体药物递送技术 工程化外泌体技术
外泌体模拟物技术
人造外泌体技术
智能可编程递送技术 温感药物递送体系
光控药物递送体系
磁控药物递送体系
超声控释递送体系
DNA折纸技术
部分透皮给药和植入给药装置
微针给药技术 微针技术
离子导入技术
促渗技术等
无针给药装置 大容量射流注射技术
蛋白质多肽类、基因药物无针给药技术
微输液植入装置 颅内给药装置
鞘内药物输注系统
活细胞递送系统 红细胞载药技术
血小板载药技术巨噬细胞载药技术
Table 1 Key technologies of new drug delivery system
Fig.1 Market size of global drug delivery systems from 2021-2030 Data source:www.Precedenceresearch.com
代表性企业 代表性平台技术
国外 BD公司(Becton, Dickinson and Company) 微针给药技术、无针给药装置、微输液植入装置
Bluebird Bio蓝鸟生物 核酸药物递送
Arcturus Therapeutics大角星治疗 乳化递送技术、核酸药物递送
Micellae Delivery Systems米切拉公司 乳化递送技术
Souvie Biodelivery索维公司 外泌体药物递送技术
Carocell Bio卡罗赛尔生物 高分子聚合物递送技术
Sixfold Bioscience六重生物科学 智能可编程递送技术、核酸药物递送
Aqdot阿克多特 智能可编程递送技术、纳米药物递送技术
国内 斯微生物 核酸药物递送、靶向递送技术
艾博生物 核酸药物递送、乳化递送技术
康希诺生物 核酸药物递送、纳米药物递送技术
启辰生生物 核酸药物递送
嘉晨西海 核酸药物递送
Table 2 Domestic and foreign representative enterprises of new drug delivery systems
[1]   Gupta B P, Thakur N, Jain N P, et al. Osmotically controlled drug delivery system with associated drugs. Journal of Pharmacy & Pharmaceutical Sciences: a Publication of the Canadian Society for Pharmaceutical Sciences, Societe Canadienne Des Sciences Pharmaceutiques, 2010, 13(4): 571-588.
[2]   Adepu S, Ramakrishna S. Controlled drug delivery systems: current status and future directions. Molecules, 2021, 26(19): 5905.
doi: 10.3390/molecules26195905
[3]   Zhang P, Chen D Y, Li L, et al. Charge reversal nano-systems for tumor therapy. Journal of Nanobiotechnology, 2022, 20(1): 31.
doi: 10.1186/s12951-021-01221-8 pmid: 35012546
[4]   Wong C, Stylianopoulos T, Cui J, et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(6): 2426-2431.
[5]   Yu Y, Zhang X L, Qiu L Y. The anti-tumor efficacy of curcumin when delivered by size/charge-changing multistage polymeric micelles based on amphiphilic poly(β-amino ester) derivates. Biomaterials, 2014, 35(10): 3467-3479.
doi: 10.1016/j.biomaterials.2013.12.096 pmid: 24439418
[6]   Caminade A M. Dendrimers, an emerging opportunity in personalized medicine? Journal of Personalized Medicine, 2022, 12(8): 1334.
doi: 10.3390/jpm12081334
[7]   Sun X K, Jiang G H, Wang Y, et al. Synthesis and drug release properties of novel pH- and temperature-sensitive copolymers based on a hyperbranched polyether core. Colloid and Polymer Science, 2011, 289(5): 677-684.
doi: 10.1007/s00396-010-2314-7
[8]   Kojima C, Yoshimura K, Harada A, et al. Synthesis and characterization of hyperbranched poly(glycidol) modified with pH- and temperature-sensitive groups. Bioconjugate Chemistry, 2009, 20(5): 1054-1057.
doi: 10.1021/bc900016x pmid: 19391618
[9]   Blanchard E L, Vanover D, Bawage S S, et al. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nature Biotechnology, 2021, 39(6): 717-726.
doi: 10.1038/s41587-021-00822-w pmid: 33536629
[10]   Lehn J M. Constitutional dynamic chemistry:bridge from supramolecular chemistry to adaptive chemistry. Constitutional Dynamic Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 1-32.
[11]   Liu C F, Li M Q, Li P X, et al. Platinum-containing supramolecular drug self-delivery nanomicelles for efficient synergistic combination chemotherapy. Biomacromolecules, 2021, 22(6): 2382-2392.
doi: 10.1021/acs.biomac.1c00173 pmid: 33905223
[12]   Hočevar S, Milošević A, Rodriguez-Lorenzo L, et al. Polymer-coated gold nanospheres do not impair the innate immune function of human B lymphocytes in vitro. ACS Nano, 2019, 13(6): 6790-6800.
doi: 10.1021/acsnano.9b01492 pmid: 31117377
[13]   Chen L, Zhou L L, Wang C H, et al. Tumor-targeted drug and CpG delivery system for phototherapy and docetaxel-enhanced immunotherapy with polarization toward M1-type macrophages on triple negative breast cancers. Advanced Materials (Deerfield Beach, Fla), 2019, 31(52): e1904997.
[14]   Sun X C, Sheng Y H, Li K K, et al. Mucoadhesive phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer for topical ocular delivery of voriconazole: synthesis, in vitro/vivo evaluation, and mechanism. Acta Biomaterialia, 2022, 138: 193-207.
doi: 10.1016/j.actbio.2021.10.047
[15]   Pandit J, Sultana Y, Aqil M. Chitosan coated nanoparticles for efficient delivery of bevacizumab in the posterior ocular tissues via subconjunctival administration. Carbohydrate Polymers, 2021, 267: 118217.
doi: 10.1016/j.carbpol.2021.118217
[16]   Sahle F F, Kim S, Niloy K K, et al. Nanotechnology in regenerative ophthalmology. Advanced Drug Delivery Reviews, 2019, 148: 290-307.
doi: S0169-409X(19)30191-7 pmid: 31707052
[17]   Hu C M J, Zhang L, Aryal S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(27): 10980-10985.
[18]   Wei X L, Zhang G, Ran D N, et al. T-cell-mimicking nanoparticles can neutralize HIV infectivity. Advanced Materials (Deerfield Beach, Fla), 2018, 30(45): e1802233.
[19]   Yang G Y, Chen S, Zhang J X. Bioinspired and biomimetic nanotherapies for the treatment of infectious diseases. Frontiers in Pharmacology, 2019, 10: 751.
doi: 10.3389/fphar.2019.00751 pmid: 31333467
[20]   Temming K, Lacombe M, van der Hoeven P, et al. Delivery of the p38 MAPkinase inhibitor SB202190 to angiogenic endothelial cells: development of novel RGD-equipped and PEGylated drug-albumin conjugates using platinum(II)-based drug linker technology. Bioconjugate Chemistry, 2006, 17(5): 1246-1255.
pmid: 16984135
[21]   Fiume L, Bolondi L, Busi C, et al. Doxorubicin coupled to lactosaminated albumin inhibits the growth of hepatocellular carcinomas induced in rats by diethylnitrosamine. Journal of Hepatology, 2005, 43(4): 645-652.
pmid: 16023760
[22]   Calzolari A, Oliviero I, Deaglio S, et al. Transferrin receptor 2 is frequently expressed in human cancer cell lines. Blood Cells, Molecules, and Diseases, 2007, 39(1): 82-91.
pmid: 17428703
[23]   Pietrangelo A, Rocchi E, Casalgrandi G, et al. Regulation of transferrin, transferrin receptor, and ferritin genes in human duodenum. Gastroenterology, 1992, 102(3): 802-809.
pmid: 1537518
[24]   Du W W, Fan Y C, Zheng N, et al. Transferrin receptor specific nanocarriers conjugated with functional 7 peptide for oral drug delivery. Biomaterials, 2013, 34(3): 794-806.
doi: 10.1016/j.biomaterials.2012.10.003
[25]   Tu Y, Zhu L. Enhancing cancer targeting and anticancer activity by a stimulus-sensitive multifunctional polymer-drug conjugate. Journal of Controlled Release, 2015, 212: 94-102.
doi: 10.1016/j.jconrel.2015.06.024 pmid: 26113423
[26]   Nishimura Y, Takeda K, Ezawa R, et al. A display of pH-sensitive fusogenic GALA peptide facilitates endosomal escape from a bio-nanocapsule via an endocytic uptake pathway. Journal of Nanobiotechnology, 2014, 12: 11.
doi: 10.1186/1477-3155-12-11 pmid: 24690265
[27]   Zhang S J, Zhang Y. Promoting dual-targeting anticancer effect by regulating the dynamic intracellular self-assembly. ACS Applied Materials & Interfaces, 2020, 12(37): 41105-41112.
[28]   Li X M, Li J Y, Gao Y, et al. Molecular nanofibers of olsalazine form supramolecular hydrogels for reductive release of an anti-inflammatory agent. Journal of the American Chemical Society, 2010, 132(50): 17707-17709.
doi: 10.1021/ja109269v pmid: 21121607
[29]   Zhang D, Qi G B, Zhao Y X, et al. In situ formation of nanofibers from Purpurin18-peptide conjugates and the assembly induced retention effect in tumor sites. Advanced Materials (Deerfield Beach, Fla), 2015, 27(40): 6125-6130.
doi: 10.1002/adma.201502598
[30]   Debacker A J, Voutila J, Catley M, et al. Delivery of oligonucleotides to the liver with GalNAc: from research to registered therapeutic drug. Molecular Therapy, 2020, 28(8): 1759-1771.
doi: S1525-0016(20)30305-1 pmid: 32592692
[31]   Armstrong J P K, Stevens M M. Strategic design of extracellular vesicle drug delivery systems. Advanced Drug Delivery Reviews, 2018, 130: 12-16.
doi: S0169-409X(18)30156-X pmid: 29959959
[32]   Milman N, Ginini L, Gil Z. Exosomes and their role in tumorigenesis and anticancer drug resistance. Drug Resistance Updates, 2019, 45: 1-12.
doi: 10.1016/j.drup.2019.07.003
[33]   Tan A, Rajadas J, Seifalian A M. Exosomes as nano-theranostic delivery platforms for gene therapy. Advanced Drug Delivery Reviews, 2013, 65(3): 357-367.
doi: 10.1016/j.addr.2012.06.014 pmid: 22820532
[34]   Clemmens H, Lambert D W. Extracellular vesicles: translational challenges and opportunities. Biochemical Society Transactions, 2018, 46(5): 1073-1082.
doi: 10.1042/BST20180112 pmid: 30242120
[35]   Herrmann I K, Wood M J A, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nature Nanotechnology, 2021, 16(7): 748-759.
doi: 10.1038/s41565-021-00931-2 pmid: 34211166
[36]   Kojima R, Bojar D, Rizzi G, et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nature Communications, 2018, 9(1): 1-10.
doi: 10.1038/s41467-017-02088-w
[37]   Cheng Y X, Hao J, Lee L A, et al. Thermally controlled release of anticancer drug from self-assembled γ-substituted amphiphilic poly(ε-caprolactone) micellar nanoparticles. Biomacromolecules, 2012, 13(7): 2163-2173.
doi: 10.1021/bm300823y pmid: 22681332
[38]   Jiang Y G, Wang Y P, Ma N, et al. Reversible self-organization of a UV-responsive PEG-terminated malachite green derivative: vesicle formation and photoinduced disassembly. Langmuir: the ACS Journal of Surfaces and Colloids, 2007, 23(7): 4029-4034.
doi: 10.1021/la063305l
[39]   Huang J, Shu Q, Wang L Y, et al. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials, 2015, 39: 105-113.
doi: 10.1016/j.biomaterials.2014.10.059 pmid: 25477177
[40]   Jin T X, Cheng D, Jiang G Y, et al. Engineering naphthalimide-cyanine integrated near-infrared dye into ROS-responsive nanohybrids for tumor PDT/PTT/chemotherapy. Bioactive Materials, 2022, 14: 42-51.
doi: 10.1016/j.bioactmat.2021.12.009 pmid: 35310343
[41]   Yang F, Zhang X X, Song L N, et al. Controlled drug release and hydrolysis mechanism of polymer-magnetic nanoparticle composite. ACS Applied Materials & Interfaces, 2015, 7(18): 9410-9419.
[42]   Wang F H, Kim D K, Yoshitake T, et al. Diffusion and clearance of superparamagnetic iron oxide nanoparticles infused into the rat striatum studied by MRI and histochemical techniques. Nanotechnology, 2011, 22(1): 015103.
doi: 10.1088/0957-4484/22/1/015103
[43]   Hu K, Sun J F, Guo Z B, et al. A novel magnetic hydrogel with aligned magnetic colloidal assemblies showing controllable enhancement of magnetothermal effect in the presence of alternating magnetic field. Advanced Materials (Deerfield Beach, Fla), 2015, 27(15): 2507-2514.
doi: 10.1002/adma.201405757
[44]   Hosseini F, Panahifar A, Adeli M, et al. Synthesis of pseudopolyrotaxanes-coated Superparamagnetic Iron Oxide Nanoparticles as new MRI contrast agent. Colloids and Surfaces B: Biointerfaces, 2013, 103: 652-657.
doi: 10.1016/j.colsurfb.2012.10.035 pmid: 23199519
[45]   Zhu X, Guo J, He C C, et al. Ultrasound triggered image-guided drug delivery to inhibit vascular reconstruction via paclitaxel-loaded microbubbles. Scientific Reports, 2016, 6(1): 1-12.
doi: 10.1038/s41598-016-0001-8
[46]   Paris J L, Cabañas M V, Manzano M, et al. Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano, 2015, 9(11): 11023-11033.
doi: 10.1021/acsnano.5b04378 pmid: 26456489
[47]   Rothemund P W K. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440(7082): 297-302.
doi: 10.1038/nature04586
[48]   Guan C Y, Zhu X L, Feng C. DNA nanodevice-based drug delivery systems. Biomolecules, 2021, 11(12): 1855.
doi: 10.3390/biom11121855
[49]   Li S P, Jiang Q, Liu S L, et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature Biotechnology, 2018, 36(3): 258-264.
doi: 10.1038/nbt.4071
[50]   Zhang X L, Liu N X, Zhou M, et al. DNA nanorobot delivers antisense oligonucleotides silencing c-met gene expression for cancer therapy. Journal of Biomedical Nanotechnology, 2019, 15(9): 1948-1959.
doi: 10.1166/jbn.2019.2828
[51]   Yang L L, Zhao Y M, Xu X M, et al. An intelligent DNA nanorobot for autonomous anticoagulation. Angewandte Chemie (International Ed in English), 2020, 59(40): 17697-17704.
doi: 10.1002/anie.v59.40
[52]   Zhang Q, Jiang Q, Li N, et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano, 2014, 8(7): 6633-6643.
doi: 10.1021/nn502058j pmid: 24963790
[53]   Wang D, Peng R Z, Peng Y B, et al. Hierarchical fabrication of DNA wireframe nanoarchitectures for efficient cancer imaging and targeted therapy. ACS Nano, 2020, 14(12): 17365-17375.
doi: 10.1021/acsnano.0c07495 pmid: 36350012
[54]   Homayun B, Lin X T, Choi H J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics, 2019, 11(3): 129.
doi: 10.3390/pharmaceutics11030129
[55]   Kigasawa K, Kajimoto K, Hama S, et al. Noninvasive delivery of siRNA into the epidermis by iontophoresis using an atopic dermatitis-like model rat. International Journal of Pharmaceutics, 2010, 383(1-2): 157-160.
doi: 10.1016/j.ijpharm.2009.08.036 pmid: 19732811
[56]   Kigasawa K, Kajimoto K, Nakamura T, et al. Noninvasive and efficient transdermal delivery of CpG-oligodeoxynucleotide for cancer immunotherapy. Journal of Controlled Release, 2011, 150(3): 256-265.
doi: 10.1016/j.jconrel.2011.01.018 pmid: 21256903
[57]   Prausnitz M R, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nature Reviews Drug Discovery, 2004, 3(2): 115-124.
doi: 10.1038/nrd1304 pmid: 15040576
[58]   Taberner A, Hogan N C, Hunter I W. Needle-free jet injection using real-time controlled linear Lorentz-force actuators. Medical Engineering & Physics, 2012, 34(9): 1228-1235.
doi: 10.1016/j.medengphy.2011.12.010
[59]   Inoue S, Mizoguchi I, Sonoda J, et al. Induction of potent antitumor immunity by intradermal DNA injection using a novel needle-free pyro-drive jet injector. Cancer Science, 2023, 114(1): 34-47.
doi: 10.1111/cas.v114.1
[60]   Kelley E L, Fernandes A, Pelletier M, et al. Advances in large volume subcutaneous injections: a pilot tolerability study of an innovative needle-free injection platform. PDA Journal of Pharmaceutical Science and Technology, 2022, 76(6): 474-484.
doi: 10.5731/pdajpst.2021.012670 pmid: 35296562
[61]   Cook M, Murphy M, Bulluss K, et al. Anti-seizure therapy with a long-term, implanted intra-cerebroventricular delivery system for drug-resistant epilepsy: a first-in-man study. EClinicalMedicine, 2020, 22: 100326.
doi: 10.1016/j.eclinm.2020.100326
[62]   Biagiotti S, Paoletti M F, Fraternale A, et al. Drug delivery by red blood cells. IUBMB Life, 2011, 63(8): 621-631.
doi: 10.1002/iub.478 pmid: 21766411
[63]   Wang S H, Yang Y Q, Ma P W, et al. CAR-macrophage: an extensive immune enhancer to fight cancer. EBioMedicine, 2022, 76: 103873.
doi: 10.1016/j.ebiom.2022.103873
[64]   Cao H Q, Dan Z L, He X Y, et al. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano, 2016, 10(8): 7738-7748.
doi: 10.1021/acsnano.6b03148 pmid: 27454827
[65]   Gardell J L, Matsumoto L R, Chinn H, et al. Human macrophages engineered to secrete a bispecific T cell engager support antigen-dependent T cell responses to glioblastoma. Journal for Immunotherapy of Cancer, 2020, 8(2): e001202.
doi: 10.1136/jitc-2020-001202
[66]   Brempelis Katherine J, Cowan Courtney M, Kreuser Shannon A, et al. Genetically engineered macrophages persist in solid tumors and locally deliver therapeutic proteins to activate immune responses. Journal for ImmunoTherapy of Cancer, 2020, 8(2): e001356.
doi: 10.1136/jitc-2020-001356
[67]   Huang Y J, Guan Z L, Dai X L, et al. Engineered macrophages as near-infrared light activated drug vectors for chemo-photodynamic therapy of primary and bone metastatic breast cancer. Nature Communications, 2021, 12(1): 1-22.
doi: 10.1038/s41467-020-20314-w
[1] MA Pin-pin, XIONG Xiang-yuan. Polymeric Nanomaterials Used in Oral Insulin Delivery Systems[J]. China Biotechnology, 2023, 43(2/3): 43-53.
[2] ZHANG Wen-hui, YAN Jian-yuan, CHEN Yu-ping. The Progress of Hydrophobin-based Drug Delivery System[J]. China Biotechnology, 2023, 43(2/3): 15-25.
[3] MAO Kai-yun,LI Rong,LI Dan-dan,ZHAO Ruo-chun,FAN Yue-lei,JIANG Hong-bo. Analysis of the Current Status of Global Bispecific Antibody Development[J]. China Biotechnology, 2021, 41(11): 110-118.
[4] Wen-jie CAO,Xiang-yuan XIONG,Yan-chun GONG,Zi-ling LI,Yu-ping LI. The Application of Polymersomes in Drug Delivery System[J]. China Biotechnology, 2019, 39(6): 62-72.