Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (11): 5-17    DOI: 10.13523/j.cb.2209029
    
Diversity Evaluation of Dendrobium nobile Germplasm Resources Based on Phenotypic Traits
ZHANG Ben-hou1,2,HU Yan-hua2,NIU Zhi-tao1,LI Chao1,OU Jiang-tao1,XUE Qing-yun1,LIU Wei1,CHEN Ji-shuang2,DING Xiao-yu1,**()
1 College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
2 Dafeng Marine Industrial Institute, Nanjing Tech University, Yancheng 224100, China
Download: HTML   PDF(2251KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Dendrobium nobile Lindl. is an important cash crop in China, which has medicinal and ornamental value. Statistical analysis and diversity evaluation of phenotypic traits such as plant morphology, flowers, stomata and content of active components were carried out on 17 populations of wild D. nobile, and phylogenetic clustering analysis was carried out. The results showed that there were significant differences in phenotypic traits among different populations of D. nobile, and the germplasm resources were rich in genetic diversity. Further, systematic cluster analysis was conducted using 7 phenotypic traits with low coefficient of variation as parameters. When the Euclidean distance was 10, D. nobile populations were divided into 3 groups, of which Hainan Baisha population was an independent group, indicating that island isolation hindered gene exchange and made a great contribution to the biodiversity of D. nobile. The Hainan island provides an important place for the in situ protection of D. nobile germplasm resources and the effective maintenance of genetic resources. This study laid a theoretical foundation for the protection and utilization of D. nobile germplasm resources.



Key wordsDendrobium nobile Lindl.      Germplasm resources      Phenotypic traits      Genetic diversity     
Received: 14 September 2022      Published: 07 December 2022
ZTFLH:  Q949  
Cite this article:

ZHANG Ben-hou, HU Yan-hua, NIU Zhi-tao, LI Chao, OU Jiang-tao, XUE Qing-yun, LIU Wei, CHEN Ji-shuang, DING Xiao-yu. Diversity Evaluation of Dendrobium nobile Germplasm Resources Based on Phenotypic Traits. China Biotechnology, 2022, 42(11): 5-17.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2209029     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I11/5

编码 采样点 样本数/株 经度E 纬度N 海拔/m
GXBS 百色,中国广西壮族自治区 15 106°61' 23°91' 202
GXJX 金秀,中国广西壮族自治区 12 110°19' 24°13' 906
GXBY 宾阳,中国广西壮族自治区 13 108°80' 23°22' 117
GXRX 容县,中国广西壮族自治区 15 110°55' 22°89' 121
YNBS 保山,中国云南省 11 99°14' 25°11' 1 872
YNHH 红河,中国云南省 12 103°36' 23°32' 1 405
YNLC 临沧,中国云南省 15 100°06' 23°87' 1 760
YNPE 普洱,中国云南省 13 100°96' 22°83' 1 378
GZCS 赤水,中国贵州省 14 105°68' 28°59' 289
GZLB 荔波,中国贵州省 13 107°87' 25°41' 475
XZCY 察隅,中国西藏自治区 13 97°46' 28°65' 2 691
XZMT 墨脱,中国西藏自治区 15 95°33' 29°33' 1 008
SCLS 凉山,中国四川省 13 102°32' 27°91' 1 868
SCXC 西昌,中国四川省 16 101°73' 27°20' 2 162
HNBS 白沙,中国海南省 12 109°43' 19°17' 391
LW 老挝国 13 102°49' 19°85' 685
MD 缅甸国 15 95°84' 22°24' 617
Table 1 Specimens used in this study with their localities of collection
Fig.1 Structure of Dendrobium nobile flower
Fig.2 Morphology of Dendrobium nobile in 17 populations
编码 叶片长/cm 叶片宽/cm 株高/cm 节间长/cm 茎粗/mm
GXBS 10.32±1.07 2.43±0.18 20.89±1.49 3.31±0.22 9.33±0.91
GXJX 8.38±0.60 2.41±0.21 15.25±1.36 2.58±0.18 9.86±0.61
GXBY 11.42±1.06 1.96±0.18 29.47±2.17 3.67±0.10 6.89±0.52
GXRX 7.63±0.34 2.23±0.31 15.86±1.44 2.88±021 7.74±0.33
YNBS 11.54±1.06 3.02±0.37 31.38±2.94 3.93±0.34 12.82±1.18
YNHH 11.09±0.67 2.29±0.19 28.26±2.62 2.90±0.19 10.94±1.07
YNLC 10.85±0.49 2.57±0.23 30.62±2.74 3.38±0.28 10.70±1.50
YNPE 8.91±0.73 1.98±0.13 19.26±1.25 2.38±0.19 8.60±0.87
GZCS 7.77±0.51 1.82±0.12 21.38±1.29 3.30±0.32 8.03±0.59
GZLB 7.48±0.62 1.71±0.13 38.63±2.63 3.89±0.12 11.05±1.11
XZCY 8.79±0.50 2.27±0.10 17.13±1.42 3.49±0.22 8.88±0.42
XZMT 7.62±0.63 1.54±0.11 30.55±2.28 2.03±0.15 6.30±0.52
SCLS 10.02±1.16 2.21±0.09 16.02±1.41 3.14±0.12 9.03±0.96
SCXC 7.95±0.51 1.84±0.15 19.68±1.55 2.89±0.32 11.76±1.15
HNBS 10.16±0.93 2.04±0.18 40.63±4.46 3.09±0.20 8.08±0.51
LW 11.69±1.04 2.72±0.18 39.39±3.50 3.32±0.16 12.71±0.85
MD 9.37±0.88 1.85±0.12 44.17±3.86 4.09±0.37 10.43±0.92
Table 2 Morphological data of Dendrobium nobile in 17 populations
编码 叶片长 叶片宽 株高 节间长 茎粗
GXBS 10.37 7.41 7.13 6.65 9.75
GXJX 7.16 8.71 8.92 6.98 6.19
GXBY 9.28 9.18 7.36 2.72 7.55
GXRX 4.46 13.90 9.08 7.29 4.26
YNBS 9.19 12.25 9.37 8.65 9.20
YNHH 6.04 8.30 9.27 6.55 9.78
YNLC 4.52 8.95 8.95 8.28 14.02
YNPE 8.19 6.57 6.49 7.98 10.12
GZCS 6.56 6.59 6.03 9.70 7.35
GZLB 8.29 7.60 6.81 3.08 10.05
XZCY 5.69 4.41 8.29 6.30 4.73
XZMT 8.27 7.14 7.46 7.39 8.25
SCLS 11.58 4.07 8.80 3.82 10.63
SCXC 6.42 8.15 7.88 11.07 9.78
HNBS 9.15 8.82 10.98 6.47 6.31
LW 8.90 6.62 8.89 4.82 6.69
MD 9.39 6.49 8.74 9.05 8.82
均值 7.85 7.95 8.26 6.87 8.44
Table 3 Variation coefficient of morphological data of Dendrobium nobile
编码 花径/cm 花梗长/cm 唇瓣长/cm 唇瓣宽/cm 花瓣长/cm 花瓣宽/cm 萼片长/cm 萼片宽/cm
GXBS 8.03±0.62 4.52±0.33 2.41±0.16 2.49±0.12 4.01±0.31 2.25±0.11 4.12±0.21 1.29±0.08
GXJX 8.21±0.84 5.08±0.44 3.13±0.24 3.22±0.31 4.16±0.22 2.25±0.14 4.36±0.33 1.53±0.03
GXBY 7.92±0.84 4.55±0.17 2.91±0.18 2.59±0.25 4.03±0.26 2.15±0.21 4.22±0.33 1.21±0.11
GXRX 7.32±0.88 4.64±0.18 2.88±0.22 2.46±0.20 3.42±0.34 2.18±0.30 3.92±0.50 1.18±0.12
YNBS 8.12±0.92 5.12±0.35 2.93±0.31 2.62±0.19 4.25±0.29 2.26±0.17 3.88±0.41 1.31±0.09
YNHH 8.20±0.78 4.99±0.62 2.68±0.28 2.82±0.17 3.97±0.54 2.21±0.16 3.64±0.32 1.38±0.03
YNLC 8.16±0.66 5.23±0.71 2.38±0.19 2.59±0.33 4.12±0.42 2.19±0.20 3.82±0.18 1.29±0.08
YNPE 8.05±0.92 5.46±0.54 2.73±0.17 2.56±0.21 3.89±0.33 2.27±0.22 4.02±0.26 1.48±0.09
GZCS 7.68±0.91 4.48±0.33 2.93±0.25 3.01±0.15 3.64±0.30 2.22±0.14 3.58±0.35 1.71±0.14
GZLB 7.75±0.75 4.56±0.58 2.95±0.31 2.68±0.22 3.59±0.18 2.18±0.16 3.67±0.34 1.43±0.09
XZCY 7.01±0.63 4.02±0.31 2.12±0.11 2.33±0.18 3.37±0.21 1.53±0.23 3.73±0.21 1.08±0.07
XZMT 6.64±0.77 3.26±0.18 2.36±0.22 2.28±0.12 3.25±0.16 1.78±0.13 3.68±0.24 1.25±0.12
SCLS 7.35±0.76 3.67±0.25 2.32±0.18 1.98±0.10 3.76±0.42 2.16±0.07 3.95±0.39 1.17±0.14
SCXC 7.73±0.89 3.36±0.30 3.08±0.15 2.76±0.20 3.59±0.15 2.34±0.25 4.12±0.12 1.21±0.08
HNBS 7.63±0.81 4.83±0.52 2.38±0.23 2.43±0.19 3.31±0.21 1.75±0.09 4.55±0.25 0.98±0.10
LW 8.05±1.03 5.37±0.48 2.98±0.20 3.10±0.17 3.96±0.31 1.98±0.16 3.62±0.41 1.43±0.14
MD 7.95±0.62 4.32±0.52 2.38±0.19 2.55±0.14 3.67±0.44 2.13±0.18 3.78±0.25 1.62±0.11
Table 4 Flower morphology data of Dendrobium nobile in 17 populations
编码 花径 花梗长 唇瓣长 唇瓣宽 花瓣长 花瓣宽 萼片长 萼片宽
GXBS 7.72 7.30 6.64 4.82 7.73 4.89 5.10 6.20
GXJX 10.62 10.77 9.66 7.82 6.34 5.14 5.49 10.20
GXBY 10.61 3.74 6.19 9.65 6.45 9.77 7.82 9.09
GXRX 12.02 3.88 7.64 8.13 9.94 13.76 12.76 10.17
YNBS 11.33 6.84 10.58 7.25 6.82 7.52 10.57 6.87
YNHH 9.51 12.42 10.45 6.03 13.60 7.24 8.79 2.17
YNLC 8.09 13.58 7.98 12.74 10.19 9.13 4.71 6.20
YNPE 11.43 9.89 6.23 8.20 8.48 9.69 6.47 6.08
GZCS 11.85 7.37 8.53 4.98 8.24 6.31 9.78 8.19
GZLB 9.68 12.72 10.51 8.21 5.01 7.34 9.26 6.29
XZCY 8.99 7.71 5.19 7.73 6.23 15.03 5.63 6.48
XZMT 11.60 5.52 9.32 5.26 4.92 7.30 6.52 9.60
SCLS 10.34 6.81 7.76 5.05 11.17 3.24 9.87 11.97
SCXC 11.51 8.93 4.87 7.25 4.18 10.68 2.91 6.61
HNBS 10.23 8.66 7.67 9.63 5.29 6.22 7.57 1.96
LW 12.80 8.94 6.71 5.48 7.83 8.08 11.33 9.79
MD 7.80 12.04 7.98 5.49 11.99 8.45 6.61 6.79
均值 10.36 8.65 7.88 7.28 7.91 8.22 7.72 7.33
Table 5 Variation coefficient of flower morphology data of Dendrobium nobile
Fig.3 Flower morphology of Dendrobium nobile in 17 populations
Fig.4 Microscopic observation of Dendrobium nobile stomata in 17 populations (10 × 40×microscope)
编码 气孔长/μm 气孔宽/μm 气孔比 气孔面积/μm2 气孔密度/(个/mm2)
GXBS 30.05±1.22 25.06±1.18 1.20±0.08 591.15±40.15 35.20±2.26
GXJX 28.12±1.56 18.98±0.91 1.48±0.11 418.97±33.25 39.80±3.82
GXBY 31.34±2.24 24.12±1.88 1.30±0.09 593.40±25.60 27.60±2.48
GXRX 36.22±1.88 28.68±1.36 1.26±0.08 815.45±68.12 25.00±3.12
YNBS 32.65±1.35 26.18±2.21 1.25±0.12 671.00±55.85 36.20±3.28
YNHH 33.29±0.88 28.39±0.89 1.17±0.06 741.91±63.21 28.40±2.29
YNLC 30.31±2.21 24.33±0.33 1.25±0.08 578.89±50.26 29.80±1.95
YNPE 29.85±0.80 21.93±2.08 1.36±0.11 513.87±45.98 32.60±3.18
GZCS 25.67±1.33 18.66±1.09 1.38±0.10 376.02±33.28 51.20±3.68
GZLB 26.54±1.86 21.23±1.56 1.25±0.05 442.30±22.09 48.80±4.32
XZCY 31.56±3.12 25.52±0.58 1.24±0.04 632.25±48.92 63.60±4.59
XZMT 24.39±1.68 17.39±0.98 1.40±0.06 332.95±30.28 61.20±5.56
SCLS 24.28±1.75 19.33±1.21 1.26±0.03 368.43±29.85 63.60±5.48
SCXC 21.35±2.18 16.96±0.68 1.26±0.11 284.25±23.38 65.60±3.56
HNBS 39.47±2.58 32.37±0.96 1.22±0.13 1002.95±88.31 20.80±2.25
LW 35.09±0.95 30.08±3.01 1.17±0.05 828.57±65.33 26.40±2.30
MD 38.62±1.29 34.02±2.05 1.14±0.06 1031.37±81.69 22.60±2.20
Table 6 Stomata data of Dendrobium nobile in 17 populations
编码 气孔长 气孔宽 气孔比 气孔面积 气孔密度
GXBS 4.06 4.71 7.43 7.94 6.42
GXJX 5.55 4.79 6.92 4.31 9.60
GXBY 7.15 7.79 6.35 8.35 8.99
GXRX 5.19 4.74 9.60 8.32 12.48
YNBS 4.13 8.44 5.13 8.52 9.06
YNHH 2.64 3.13 6.40 8.68 8.06
YNLC 7.29 1.36 8.09 8.95 6.54
YNPE 2.68 9.48 7.25 8.85 9.75
GZCS 5.18 5.84 4.00 4.99 7.19
GZLB 7.01 7.35 3.23 7.74 8.85
XZCY 9.89 2.27 4.29 9.09 7.22
XZMT 6.89 5.64 2.38 8.10 9.08
SCLS 7.21 6.26 8.73 8.23 8.62
SCXC 10.21 4.01 10.66 8.81 5.43
HNBS 6.54 2.97 4.27 7.88 10.82
LW 2.71 10.01 5.26 7.92 8.71
MD 3.34 6.03 6.67 6.79 9.73
均值 5.74 5.58 6.27 7.85 8.62
Table 7 Variation coefficient of Stomata data of Dendrobium nobile
编码 总生物碱 多糖
含量/(mg/g DW) 变异系数 含量/(g/g DW) 变异系数
GXBS 11.13±0.75 6.74 0.1134±0.0055 4.85
GXBY 17.48±0.40 2.29 0.0928±0.0029 3.13
GXJX 10.74±1.03 9.59 0.0428±0.0063 14.72
GXRX 6.46±0.78 12.07 0.0800±0.0069 8.63
YNBS 8.59±0.40 4.66 0.0808±0.0061 7.55
YNHH 9.84±0.34 3.46 0.0814±0.0071 8.72
YNLC 8.45±0.42 4.97 0.0876±0.0034 3.88
YNPE 18.38±0.72 3.92 0.0530±0.0039 7.36
GZCS 19.41±1.24 6.39 0.0865±0.0069 7.98
GZLB 17.25±0.95 5.51 0.1030±0.0079 7.67
XZCY 6.30±0.24 3.81 0.1350±0.0037 2.74
XZMT 5.36±0.43 8.02 0.1425±0.0087 6.11
SCLS 5.96±0.85 14.26 0.0736±0.0054 7.34
SCXC 13.17±1.20 9.11 0.0864±0.0075 8.68
HNBS 23.71±0.74 3.12 0.1220±0.0065 5.33
LW 4.96±0.31 6.25 0.1135±0.0054 4.76
MD 12.82±0.98 7.64 0.0960±0.0062 6.46
均值 6.58 6.82
Table 8 Content and Variation coefficient of total alkaloids and polysaccharides in Dendrobium nobile from 17 populations
Fig.5 Systematic clustering analysis based on contents of total alkaloids and polysaccharides
分组 节间长/cm 唇瓣宽/cm 萼片宽/cm 气孔长/μm 气孔宽/μm 总生物碱含量
/(mg/g DW)
多糖含量
/(g/g DW)
I 2.99 2.64 1.37 26.44 19.83 13.47 0.085 1
II 3.49 2.59 1.31 33.50 27.70 8.39 0.100 9
III 3.09 2.43 0.98 39.47 32.37 23.71 0.122 0
Table 9 Average main characters of various groups of Dendrobium nobile
[1]   Zhu S Y, Niu Z T, Xue Q Y, et al. Accurate authentication of Dendrobium officinale and its closely related species by comparative analysis of complete plastomes. Acta Pharmaceutica Sinica B, 2018, 8(6): 969-980.
doi: 10.1016/j.apsb.2018.05.009
[2]   Cheng X F, Chen W, Zhou Z H, et al. Functional characterization of a novel tropinone reductase-like gene in Dendrobium nobile lindl. Journal of Plant Physiology, 2013, 170(10): 958-964.
doi: 10.1016/j.jplph.2013.02.007
[3]   Wen Z Z, Lin Y, Liu Y Q, et al. Effects of paclobutrazol in vitro on transplanting efficiency and root tip development of Dendrobium nobile. Biologia Plantarum, 2013, 57(3): 576-580.
doi: 10.1007/s10535-013-0319-z
[4]   周威, 夏杰, 孙文博, 等. 金钗石斛的化学成分和药理作用研究现状. 中国新药杂志, 2017, 26(22): 2693-2700.
[4]   Zhou W, Xia J, Sun W B, et al. Current research status of chemical constituents and pharmacological effects of Dendrobium nobile. Chinese Journal of New Drugs, 2017, 26(22): 2693-2700.
[5]   令狐楚, 谷荣辉, 秦礼康. 金钗石斛的化学成分及药理作用研究进展. 中草药, 2021, 52(24): 7693-7708.
[5]   Linghu C, Gu R H, Qin L K. Research progress on chemical constituents and pharmacological effects of Dendrobium nobile. Chinese Traditional and Herbal Drugs, 2021, 52(24): 7693-7708.
[6]   余玉珠, 陆艳柳, 陈卫国, 等. 12种石斛属植物不同栽培技术及观赏价值研究. 安徽农业科学, 2020, 48(17): 156-157, 205.
[6]   Yu Y Z, Lu Y L, Chen W G, et al. Study on different cultivation techniques and ornamental value of 12 species of Dendrobium. Journal of Anhui Agricultural Sciences, 2020, 48(17): 156-157, 205.
[7]   赵春江. 植物表型组学大数据及其研究进展. 农业大数据学报, 2019, 1(2): 5-18.
[7]   Zhao C J. Big data of plant phenomics and its research progress. Journal of Agricultural Big Data, 2019, 1(2): 5-18.
[8]   翁杨, 曾睿, 吴陈铭, 等. 基于深度学习的农业植物表型研究综述. 中国科学: 生命科学, 2019, 49(6): 698-716.
[8]   Weng Y, Zeng R, Wu C M, et al. A survey on deep-learning-based plant phenotype research in agriculture. Scientia Sinica (Vitae), 2019, 49(6): 698-716.
[9]   穆金虎, 陈玉泽, 冯慧, 等. 作物育种学领域新的革命: 高通量的表型组学时代. 植物科学学报, 2016, 34(6): 962-971.
[9]   Mu J H, Chen Y Z, Feng H, et al. A new revolution in crop breeding: the era of high-throughput phenomics. Plant Science Journal, 2016, 34(6): 962-971.
[10]   Zhang B H, Niu Z T, Li C, et al. Improving large-scale biomass and total alkaloid production of Dendrobium nobile Lindl. using a temporary immersion bioreactor system and MeJA elicitation. Plant Methods, 2022, 18(1): 10.
[11]   梅威威, 吴绍康, 张浩, 等. 铁皮石斛多糖提取工艺及脱蛋白方法研究. 中华中医药学刊, 2014, 32(12): 2869-2872.
[11]   Mei W W, Wu S K, Zhang H, et al. Comparative study on extraction of crude polysaccharides from Dendrobium candidum and removing protein procedure. Chinese Archives of Traditional Chinese Medicine, 2014, 32(12): 2869-2872.
[12]   张哲, 任明迅, 向文倩, 等. 东南亚兰科植物的物种多样性、生活习性及其传粉系统. 广西植物, 2021, 41(10): 1683-1703.
[12]   Zhang Z, Ren M X, Xiang W Q, et al. Species diversity, habits and pollination system of Orchidaceae in Southeast Asia. Guihaia, 2021, 41(10): 1683-1703.
[13]   李清, 李标, 郭顺星. 金钗石斛转录组SSR位点信息分析. 中国中药杂志, 2017, 42(1): 63-69.
[13]   Li Q, Li B, Guo S X. SSR information in transcriptome of Dendrobium nobile. China Journal of Chinese Materia Medica, 2017, 42(1): 63-69.
[14]   Pan C X, Chen S R, Chen Z M, et al. Assessing the geographical distribution of 76 Dendrobium species and impacts of climate change on their potential suitable distribution area in China. Environmental Science and Pollution Research International, 2022, 29(14): 20571-20592.
doi: 10.1007/s11356-021-15788-0
[15]   胡建斌, 马双武, 王吉明, 等. 基于表型性状的甜瓜核心种质构建. 果树学报, 2013, 30(3): 404-411.
[15]   Hu J B, Ma S W, Wang J M, et al. Establishment of a melon (Cucumis melo) core collection based on phenotypic characters. Journal of Fruit Science, 2013, 30(3): 404-411.
[16]   张洪亮, 李自超, 曹永生, 等. 表型水平上检验水稻核心种质的参数比较. 作物学报, 2003, 29(2): 252-257.
[16]   Zhang H L, Li Z C, Cao Y S, et al. Comparison of parameters for testing the rice core collection in phenotype. Acta Agronomica Sinica, 2003, 29(2): 252-257.
[17]   乔婧, 高海燕, 李文清, 等. 粒用高粱种质资源主要农艺性状的相关性及主成分分析. 山西农业科学, 2019, 47(11): 1903-1906, 1917.
[17]   Qiao J, Gao H Y, Li W Q, et al. Correlation and principal component analysis of main agronomic characters of grain Sorghum germplasm resources. Journal of Shanxi Agricultural Sciences, 2019, 47(11): 1903-1906, 1917.
[18]   郗连连, 李嘉宝, 朱凯琳, 等. 花楸属3种植物的基因组大小与叶气孔特征分析. 植物科学学报, 2020, 38(1): 32-38.
[18]   Xi L L, Li J B, Zhu K L, et al. Variation in genome size and stomatal traits among three Sorbus species. Plant Science Journal, 2020, 38(1): 32-38.
[19]   秦燕, 王跃华, 孙卫邦, 等. 百部科植物叶表皮特征及其分类学意义. 植物科学学报, 2018, 36(4): 487-500.
[19]   Qin Y, Wang Y H, Sun W B, et al. Characters of the leaf epidermis of Stemonaceae and their taxonomical significance. Plant Science Journal, 2018, 36(4): 487-500.
[20]   王中煊, 张豪, 陈蕾, 等. 15种独蒜兰属植物叶表皮微形态特征及分类学意义研究. 西北植物学报, 2020, 40(9): 1527-1538.
[20]   Wang Z X, Zhang H, Chen L, et al. Leaf epidermal micro-morphology and taxonomic significance of 15 species of Pleione. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(9): 1527-1538.
[21]   Slatkin M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution, 1993, 47(1): 264-279.
doi: 10.1111/j.1558-5646.1993.tb01215.x pmid: 28568097
[22]   Barson N J, Cable J, van oosterhout C. Population genetic analysis of microsatellite variation of guppies (Poecilia reticulata) in Trinidad and Tobago: evidence for a dynamic source-sink metapopulation structure, founder events and population bottlenecks. Journal of Evolutionary Biology, 2009, 22(3): 485-497.
doi: 10.1111/j.1420-9101.2008.01675.x pmid: 19210594
[23]   Markwith S H, Scanlon M J. Multiscale analysis of Hymenocallis coronaria (Amaryllidaceae) genetic diversity, genetic structure, and gene movement under the influence of unidirectional stream flow. American Journal of Botany, 2007, 94(2): 151-160.
doi: 10.3732/ajb.94.2.151 pmid: 21642217
[24]   Hou B W, Tian M, Luo J, et al. Genetic diversity assessment and ex situ conservation strategy of the endangered Dendrobium officinale (Orchidaceae) using new trinucleotide microsatellite markers. Plant Systematics and Evolution, 2012, 298(8): 1483-1491.
doi: 10.1007/s00606-012-0651-3
[25]   Yan W J, Hou B W, Xue Q Y, et al. Different evolutionary processes in shaping the genetic composition of Dendrobium nobile in southwest China. Genetica, 2015, 143(3): 361-371.
doi: 10.1007/s10709-015-9835-4
[26]   Caujapé-Castells J, Tye A, Crawford D J, et al. Conservation of oceanic island floras: present and future global challenges. Perspectives in Plant Ecology, Evolution and Systematics, 2010, 12(2): 107-129.
doi: 10.1016/j.ppees.2009.10.001
[27]   Harding K, Benson E E, da Costa Nunes E, et al. Can biospecimen science expedite the ex situ conservation of plants in megadiverse countries? A focus on the flora of Brazil. Critical Reviews in Plant Sciences, 2013, 32(6): 411-444.
doi: 10.1080/07352689.2013.800421
[1] JIA Ming-liang, FANG He-fang, ZHANG Ben-hou, HU Yan-hua, ZHOU An-pei, LI Tong-jian, JIN Hong-guang, HAN Xing-jie, WEN Feng. Propagation and Preservation of Germplasm Resources in Pinellia ternata (Thunb.)Breit.[J]. China Biotechnology, 2022, 42(11): 18-26.
[2] ZHANG Wen-tao, YU Jing, LIU Yi-liang, ZHANG Ben-hou, CHEN Ji-shuang. Analysis of ITS Sequences and Identification of Germplasm Resources about Three Cultivars of Pinellia from Jingzhou, Hubei Province[J]. China Biotechnology, 2015, 35(1): 41-45.
[3] LI Xia, LIU Jia-jia, CHEN Jian-hua, LUAN Ming-bao, YIN Zhen-zhen, YANG Dong-liang. Screening of Camptothecin Production and SRAP Analysis of Endophytic Fungi from Camptotheca acuminata Decne[J]. China Biotechnology, 2011, 31(7): 60-64.