Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (11): 140-154    DOI: 10.13523/j.cb.2209041
    
Research Progress of the Cultivation and Influencing Factors of Anaerobic Granular Sludge in Anaerobic Reactor
WU Xu-jun1,2,LU Lei-zhen1,MA Li-qian1,YAN Su1,ZHANG Xue-ying1,YONG Xiao-yu1,ZHOU Jun1,**()
1 College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
2 Changxing Ai Sheng Environmental Protection Technology Co., Ltd., Changxing 313100, China
Download: HTML   PDF(1016KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Anaerobic biological treatment technology has been widely used in various wastewater treatments because of its advantages of high organic load, low sludge output and low energy consumption. Anaerobic granular sludge has the advantages of good settling performance, high microbial concentration and high organic load, which can greatly improve the efficiency of wastewater treatment. In particular, in the treatment of wastewater containing high ammonia nitrogen, the formation of anaerobic granular sludge is also essential for the efficient biological nitrogen removal in the reactor. But up to now, we still lack a systematic understanding of the formation of granular sludge in anaerobic reactors and the effect of wastewater treatment. So, this paper summarized the formation mechanism of anaerobic granular sludge in anaerobic reactors, analyzed the influencing factors, discussed the simulation of anaerobic granular sludge growth in anaerobic reactors, and finally analyzed the mainstream application of anaerobic granular sludge at home and abroad. The formation of granular sludge in anaerobic reactors is the result of multiple factors, and every factor that affects the formation of anaerobic granular sludge should be treated seriously. The theoretical guidance and technical support for the cultivation and application of granular sludge in anaerobic reactors were provided in this paper.



Key wordsAnaerobic reactor      Anaerobic granular sludge      Wastewater      Simulation     
Received: 15 September 2022      Published: 07 December 2022
ZTFLH:  Q819  
Cite this article:

WU Xu-jun, LU Lei-zhen, MA Li-qian, YAN Su, ZHANG Xue-ying, YONG Xiao-yu, ZHOU Jun. Research Progress of the Cultivation and Influencing Factors of Anaerobic Granular Sludge in Anaerobic Reactor. China Biotechnology, 2022, 42(11): 140-154.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2209041     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I11/140

Fig.1 Distribution of bacteria in anaerobic granular sludge
Fig.2 Schematic diagram of multivalent cation model (a) and polymer model (b) formed by anaerobic granular sludge
Fig.3 The process of anaerobic granular sludge formation
添加物质 反应器 有机负荷和水力停留时间 积极作用 参考文献
沸石 EGSB HRT 12 h 有利于微生物与基质接触和颗粒形成 Pérez-Pérez等[52]
活性炭 UASB OLR 2.9~12.0 g COD/(L·d)
HRT 5.6 d
促进了产甲烷菌富集,提高了甲烷产率和
底物降解率
Xu等[53]
泥炭土 UASB OLR 1.8 kg COD/(L·d) 改善了反应器中污泥的沉降性能、剪切阻力 Chen等[54]
硬硅钙纤维粒子 UASB OLR 0.8~5 kg COD/(L·d) 加快了反应器中污泥的颗粒化进程 韩剑宏等[55]
Ca2+(150~
300 mg/L)
UASB OLR 2.0~8.0 g COD/(L·d)
HRT 12~48 h
增加了反应器内的生物量 Yu等[56]
PVA/CS和PVA/
CS/Fe小球
UASB 微生物聚集更密集,颗粒培养速度加快,颗粒
较大,并具有良好的沉降速率
Wang等[61]
微生物菌株 EGSB OLR 4.0 kg COD/(L·d) HRT 12 h 较大颗粒直径、较高的胞外聚合物产量和相对疏水性 Ding等[60]
Fe2+ UASB OLR 1.4~10.0 g COD/(L·d)
HRT 20 h
促进颗粒污泥的形成,增加了颗粒污泥的直径
和沉降性能,降低了污泥床孔隙度
Vlyssides等[57]
信号分子 实验室
血清瓶
OLR 15.6 kg COD/(L·d) 改变细菌和产甲烷菌的群落结构,提高厌氧
颗粒污泥的有机物去除能力和产甲烷能力
Lv等[49]
Table 1 Adding different substances to promote anaerobic sludge granulation
Fig.4 Key phenomena occurring in the granular sludge reactor
反应器 规模/m3 废水来源 反应器容器负荷/
[kg COD/(m3·d)]
进水COD浓度/
(mg/L)
COD去除率/% 参考文献
EGSB 28.6 模拟城市废水 1.35~2.70 450 82.3 Yang等[67]
UASB 20 合成生活废水 1~2 500 91.8 Liu等[69]
UASB 4.7 合成生活废水 0.5~2 500 82 Zhang等[68]
EGSB 101 英国Builth Wells市城市废水 2~200(BOD浓度) 85(BOD去除率) Trego等[70]
AnGMBR 30 模拟生活废水 0.22~1.37 230~280 89 张博康等[71]
G-AnMBR 6.2 模拟生活废水 0.5 274 92.3 Sanchez等[72]
UASB 11 实际城市废水 637 73 Serrano León等[73]
ABR 89.5 合成生活废水 0.97~1.48 440~601 85~87 赵来利等[74]
ABR 14.55 合成生活废水 0.5 500 70 杜接弟等[75]
EGSB 2.5 合成生活废水 24.5~25.7 600~800 85 任洪强等[76]
Table 2 Treatment effect of partial anaerobic granular sludge on low concentration wastewater
反应器 规模/m3 废水来源 反应器容器负荷/
[kg COD/(m3·d)]
进水COD浓度/
(mg/L)
COD去除率/% 参考文献
EGSB 1004 造纸废水 10~15 2 200~2 400 70~80 周焕祥等[77]
SCA 27 印染废水 1 398~4 143 62.7 Yang等[78]
MIC 20 印染废水 4.8~9.6 1 761~3 901 85 Wang等[79]
BLR 883.1 啤酒废水 8.3 2 032~2 402 90 Xu等[80]
IC+UASB 828 果汁废水 11.7 7 800 76 王立军等[81]
ABR 18 玉米淀粉加工废水 4.0 6 000 90.5 Zhang等[82]
UASB 6 淀粉废水 0.001~0.008 1 000 81.1~98.7 Lu等[83]
UASB 476 乙醇废水 4.77 2 600~4 400 70 于鲁冀等[84]
CIC 4.6 木薯废水 2.83 6 500~8 000 94 Su等[85]
IC 100 棉浆废水 18 3 500 68 Cui等[86]
UAFB 60 制糖废水 7.8~9.6 2 000~8 000 90 Farhadian等[87]
UASB 6 味精废水 0.008 7 915 97.9 Chen等[88]
IC 1560 柠檬酸废水 15 8 200 80 王江全[89]
UASB混合反应器 141 化学合成制药废水 8 6 000~2 7000 72 Oktem等[90]
UASB 4.715 石油废水 11 500-5000 93 Chen等[91]
Table 3 Effect of partial anaerobic granular sludge on high concentration wastewater treatment
反应器 规模/m3 废水来源 进水COD浓度
/(mg/L)
COD去除
率/%
处理效果 参考文献
双循环(DC)
厌氧反应器
4.8 中药厂制药废水 3 500~4 000 95 可成功处理含大黄酸的中药废水 Su等[92]
实验室厌氧
反应器
0.25 合成的阿莫西林废水 2 000 92.4 预处理降解与厌氧生物结合可处理阿莫西林制药废水 Su等[93]
ECSB 527.34 威士忌酒厂废水 9 046.6 95.7 能有效去除废水中的COD Lin等[94]
EGSB 464.32 威士忌酒厂废水 9 046.6 94.8 能有效去除废水中的COD Lin等[94]
ECSB 75 合成纤维生产废水 7 992 85.5 表现出了较强的处理效果,COD、THF、BDO、BTO去除率分别达到85.5%、79.8%、100%、100% Wang等[95]
厌氧消化池 0.75 城市生活垃圾渗滤液 5 625 81.8 加入嗜热颗粒污泥,COD去除率达到了81.8%,甲烷产量达到117.3 mL CH4/(g·d) Feng等[98]
实验室血清瓶 1 猪场废水 7 000 85 外加颗粒污泥加强了废水处理效果 Zeng等[99]
厌氧反应器 4 木材加工厂加工废水 1 800~4 000 52.39 厌氧颗粒污泥可以作为木质素纤维的载体,COD去除率最大为52.39% 方奕涛等[100]
Table 4 Effects of partial anaerobic granular sludge on the treatment of refractory biodegradable, heavy metal, toxic and harmful wastewater
[1]   Lv L Y, Feng C D, Li W G, et al. Exogenous N-acyl-homoserine lactones accelerate resuscitation of starved anaerobic granular sludge after long-term stagnation. Bioresource Technology, 2021, 337: 125362.
doi: 10.1016/j.biortech.2021.125362
[2]   Cui P Q, Ge J Y, Chen Y Y, et al. The Fe3O4 nanoparticles-modified mycelium pellet-based anaerobic granular sludge enhanced anaerobic digestion of food waste with high salinity and organic load. Renewable Energy, 2022, 185: 376-385.
doi: 10.1016/j.renene.2021.12.050
[3]   Yang L, Xu X J, Wang H, et al. Biological treatment of refractory pollutants in industrial wastewaters under aerobic or anaerobic condition: batch tests and associated microbial community analysis. Bioresource Technology Reports, 2022, 17: 100927.
doi: 10.1016/j.biteb.2021.100927
[4]   Tawfik A, Bakr M H, Nasr M, et al. Economic and environmental sustainability for anaerobic biological treatment of wastewater from paper and cardboard manufacturing industry. Chemosphere, 2022, 289: 133166.
doi: 10.1016/j.chemosphere.2021.133166
[5]   Yan H, Li J Z, Meng J, et al. Effects of reflux ratio on the anaerobic sludge and microbial social behaviors in an expanded granular sludge bed reactor: from the perspective of acyl-homoserine lactones-mediated quorum sensing. Bioresource Technology, 2021, 337: 125360.
doi: 10.1016/j.biortech.2021.125360
[6]   Aziz A, Basheer F, Sengar A, et al. Biological wastewater treatment (anaerobic-aerobic) technologies for safe discharge of treated slaughterhouse and meat processing wastewater. Science of the Total Environment, 2019, 686: 681-708.
doi: 10.1016/j.scitotenv.2019.05.295
[7]   Tang R, Luo H P, Prommer H, et al. Response of anaerobic granular sludge to long-term loading of roxarsone: from macro- to micro-scale perspective. Water Research, 2021, 204: 117599.
doi: 10.1016/j.watres.2021.117599
[8]   刘峰. 厌氧颗粒污泥的培养与性能研究. 西安: 西安理工大学, 2019.
[8]   Liu F. Study on the development and performance of anaerobic granular sludge. Xi’an: Xi’an University of Technology, 2019.
[9]   王冰. 厌氧反应器污泥颗粒化过程研究. 哈尔滨: 哈尔滨工业大学, 2008.
[9]   Wang B. Study on the process of sludge granulation in anaerobic reactor. Harbin: Harbin Institute of Technology, 2008.
[10]   王伟刚, 王彤, 樊宇菲, 等. 厌氧氨氧化颗粒污泥聚集机制研究进展. 微生物学通报, 2022, 49(5): 1927-1940.
[10]   Wang W G, Wang T, Fan Y F, et al. Research progress on the aggregation mechanism of anammox granular sludge. Microbiology China, 2022, 49(5): 1927-1940.
[11]   Qin L, Tay J H, Liu Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochemistry, 2004, 39(5): 579-584.
doi: 10.1016/S0032-9592(03)00125-0
[12]   Qian F Y, Cui S H, Liu F, et al. Effect of hydraulic selection pressure on the characteristics of partial nitritation/anammox granular sludge in a continuous-flow reactor. Environmental Technology & Innovation, 2021, 24: 102042.
[13]   金容, 李攀, 李亮, 等. 好氧颗粒污泥研究现状及展望. 环境生态学, 2019, 1(4): 63-66.
[13]   Jin R, Li P, Li L, et al. Research status and prospect of aerobic granular sludge. Environmental Ecology, 2019, 1(4): 63-66.
[14]   Liu Y, Xu H L, Yang S F, et al. Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Research, 2003, 37(3): 661-673.
pmid: 12688701
[15]   Zhang J, Pan J Q, Zhao S S, et al. Calcium migration inside anaerobic granular sludge: evidence from calcium carbonate precipitation pattern. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625: 126890.
doi: 10.1016/j.colsurfa.2021.126890
[16]   Ding W Q, Jin W B, Zhou X, et al. Role of extracellular polymeric substances in anaerobic granular sludge: assessing dewaterability during Fe(II)-peroxydisulfate conditioning and granulation processes. Journal of Cleaner Production, 2021, 286: 124968.
doi: 10.1016/j.jclepro.2020.124968
[17]   施云芬, 王旭晖, 孙萌, 等. 厌氧颗粒污泥中产甲烷菌的研究进展. 硅酸盐通报, 2013, 32(11): 2263-2267.
[17]   Shi Y F, Wang X H, Sun M, et al. Research progress of methanogens in anaerobic granular sludge. Bulletin of the Chinese Ceramic Society, 2013, 32(11): 2263-2267.
[18]   陈重军, 冯宇, 汪瑶琪, 等. 厌氧氨氧化反应影响因素研究进展. 生态环境学报, 2016, 25(2): 346-352.
[18]   Chen C J, Feng Y, Wang Y Q, et al. Research progress in influence factor of anammox reaction. Ecology and Environmental Sciences, 2016, 25(2): 346-352.
[19]   Liang J H, Wang Q H, Li J, et al. Effects of anaerobic granular sludge towards the treatment of flowback water in an up-flow anaerobic sludge blanket bioreactor: comparison between mesophilic and thermophilic conditions. Bioresource Technology, 2021, 326: 124784.
doi: 10.1016/j.biortech.2021.124784
[20]   Ni S Q, Gao B Y, Wang C C, et al. Fast start-up, performance and microbial community in a pilot-scale anammox reactor seeded with exotic mature granules. Bioresource Technology, 2011, 102(3): 2448-2454.
doi: 10.1016/j.biortech.2010.11.006
[21]   Hwang M H, Jang N J, Hyun S H, et al. Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. Journal of Biotechnology, 2004, 111(3): 297-309.
pmid: 15246666
[22]   Pöschl M, Ward S, Owende P. Evaluation of energy efficiency of various biogas production and utilization pathways. Applied Energy, 2010, 87(11): 3305-3321.
doi: 10.1016/j.apenergy.2010.05.011
[23]   Sheng K C, Chen X, Pan J M, et al. Effect of ammonia and nitrate on biogas production from food waste via anaerobic digestion. Biosystems Engineering, 2013, 116(2): 205-212.
doi: 10.1016/j.biosystemseng.2013.08.005
[24]   Li D, Chen L, Liu X F, et al. Instability mechanisms and early warning indicators for mesophilic anaerobic digestion of vegetable waste. Bioresource Technology, 2017, 245: 90-97.
doi: S0960-8524(17)31214-2 pmid: 28892710
[25]   Chen H H, Hao S L, Chen Z, et al. Mesophilic and thermophilic anaerobic digestion of aqueous phase generated from hydrothermal liquefaction of cornstalk: molecular and metabolic insights. Water Research, 2020, 168: 115199.
doi: 10.1016/j.watres.2019.115199
[26]   Qin R H, Lin X M, Chen Z P, et al. Evaluation of characteristics and microbial community of anaerobic granular sludge under microplastics and aromatic carboxylic acids exposure. Science of the Total Environment, 2021, 792: 148361.
doi: 10.1016/j.scitotenv.2021.148361
[27]   Jetten M, Schmid M, van de Pas-Schoonen K, et al. Anammox organisms: enrichment, cultivation, and environmental analysis. Methods in Enzymology, 2005, 397: 34-57.
pmid: 16260284
[28]   徐师, 张大超, 肖隆文, 等. 厌氧氨氧化反应快速启动方法的研究进展. 环境工程, 2018, 36(6): 18-21, 168.
[28]   Xu S, Zhang D C, Xiao L W, et al. Research progress on quick start-up process of the anaerobic ammonia oxidation process. Environmental Engineering, 2018, 36(6): 18-21, 168.
[29]   李建金, 黄勇, 李大鹏. 厌氧颗粒污泥的特性、培养及应用研究进展. 环境科技, 2011, 24(3): 59-63.
[29]   Li J J, Huang Y, Li D P. Advance of characteristics, cultivation and applications of anaerobic granular sludge. Environmental Science and Technology, 2011, 24(3): 59-63.
[30]   Wu P, Chen Y, Ji X M, et al. Fast start-up of the cold-anammox process with different inoculums at low temperature (13℃) in innovative reactor. Bioresource Technology, 2018, 267: 696-703.
doi: 10.1016/j.biortech.2018.07.026
[31]   Zakoura M, Kopsahelis A, Tsigkou K, et al. Performance evaluation of three mesophilic upflow anaerobic sludge blanket bioreactors treating olive mill wastewater: Flocculent and granular inocula tests, organic loading rate effect and anaerobic consortia structure. Fuel, 2022, 313: 122951.
doi: 10.1016/j.fuel.2021.122951
[32]   张星星, 王昕竹, 印雯, 等. 基于厌氧氨氧化技术处理市政污水的研究进展. 工业水处理, 2020, 40(1): 1-7.
[32]   Zhang X X, Wang X Z, Yin W, et al. Research progress on the treatment of municipal sewage by anammox technology. Industrial Water Treatment, 2020, 40(1): 1-7.
[33]   Wang Q T, Wang Y L, Lin J B, et al. Selection of seeding strategy for fast start-up of anammox process with low concentration of anammox sludge inoculum. Bioresource Technology, 2018, 268: 638-647.
doi: S0960-8524(18)31160-X pmid: 30142617
[34]   Wang T, Zhang H M, Gao D W, et al. Enrichment of anammox bacteria in seed sludges from different wastewater treating processes and start-up of anammox process. Desalination, 2011, 271(1-3): 193-198.
doi: 10.1016/j.desal.2010.12.034
[35]   Liu Y X, Liu W, Li Y Y, et al. Layered inoculation of anaerobic digestion and anammox granular sludges for fast start-up of an anammox reactor. Bioresource Technology, 2021, 339: 125573.
doi: 10.1016/j.biortech.2021.125573
[36]   陈晨, 马邕文, 万金泉, 等. C/N比对厌氧颗粒污泥生理生化的影响. 中国环境科学, 2012, 32(3): 478-484.
[36]   Chen C, Ma Y W, Wan J Q, et al. Effects of C/N ratio on physiological biochemical characteristics of anaerobic granular sludge. China Environmental Science, 2012, 32(3): 478-484.
[37]   Zhou W L, Imai T, Ukita M, et al. Triggering forces for anaerobic granulation in UASB reactors. Process Biochemistry, 2006, 41(1): 36-43.
doi: 10.1016/j.procbio.2005.02.029
[38]   Lu X Q, Zhen G Y, Chen M, et al. Biocatalysis conversion of methanol to methane in an upflow anaerobic sludge blanket (UASB) reactor: long-term performance and inherent deficiencies. Bioresource Technology, 2015, 198: 691-700.
doi: 10.1016/j.biortech.2015.09.073 pmid: 26441026
[39]   Liu H, Yang X, Zhu K L, et al. Electrocoagulation pretreatment reduced the synergistic inhibition of anaerobic granular sludge by micro stickies and Ca2+ and delayed the calcification of granular sludge. Industrial Crops and Products, 2022, 178: 114584.
doi: 10.1016/j.indcrop.2022.114584
[40]   Wu Y R, Liu H, Dang W H, et al. Effect of calcification on anaerobic granular sludge: micro-morphological structure and microbial community. Journal of Water Process Engineering, 2021, 41: 102046.
doi: 10.1016/j.jwpe.2021.102046
[41]   Dang Y, Zhang R, Wu S J, et al. Calcium effect on anaerobic biological treatment of fresh leachate with extreme high calcium concentration. International Biodeterioration & Biodegradation, 2014, 95: 76-83.
[42]   Zhang X L, Chen J X, Li J. The removal of microplastics in the wastewater treatment process and their potential impact on anaerobic digestion due to pollutants association. Chemosphere, 2020, 251: 126360.
doi: 10.1016/j.chemosphere.2020.126360
[43]   Tian X M, Shen Z Q, Han Z F, et al. The effect of extracellular polymeric substances on exogenous highly toxic compounds in biological wastewater treatment: an overview. Bioresource Technology Reports, 2019, 5: 28-42.
doi: 10.1016/j.biteb.2018.11.009
[44]   Yin P N, Guo J B, Xiao S M, et al. Rapid of cultivation dissimilatory perchlorate reducing granular sludge and characterization of the granulation process. Bioresource Technology, 2019, 276: 260-268.
doi: S0960-8524(18)31738-3 pmid: 30640020
[45]   Peng H, Guo J B, Li H B, et al. Granulation and response of anaerobic granular sludge to allicin stress while treating allicin-containing wastewater. Biochemical Engineering Journal, 2021, 169: 107971.
doi: 10.1016/j.bej.2021.107971
[46]   Li M L, Wu Y R, Wang Z W, et al. Improvement in calcified anaerobic granular sludge performance by exogenous acyl-homoserine lactones. Ecotoxicology and Environmental Safety, 2021, 210: 111874.
doi: 10.1016/j.ecoenv.2020.111874
[47]   Chen H, Li A, Cui C W, et al. AHL-mediated quorum sensing regulates the variations of microbial community and sludge properties of aerobic granular sludge under low organic loading. Environment International, 2019, 130: 104946.
doi: 10.1016/j.envint.2019.104946
[48]   Feng H J, Ding Y C, Wang M Z, et al. Where are signal molecules likely to be located in anaerobic granular sludge? Water Research, 2014, 50: 1-9.
doi: 10.1016/j.watres.2013.11.021 pmid: 24355329
[49]   Lv L Y, Li W G, Zheng Z J, et al. Exogenous acyl-homoserine lactones adjust community structures of bacteria and methanogens to ameliorate the performance of anaerobic granular sludge. Journal of Hazardous Materials, 2018, 354: 72-80.
doi: S0304-3894(18)30330-3 pmid: 29729601
[50]   张善林. 厌氧颗粒污泥快速培养的工艺条件研究. 扬州: 扬州大学, 2020.
[50]   Zhang S L. Study on the process conditions for rapid culture of anaerobic granular sludge. Yangzhou: Yangzhou University, 2020.
[51]   Fernández N, Montalvo S, Fernández-Polanco F, et al. Real evidence about zeolite as microorganisms immobilizer in anaerobic fluidized bed reactors. Process Biochemistry, 2007, 42(4): 721-728.
doi: 10.1016/j.procbio.2006.12.004
[52]   Pérez-Pérez T, Correia G T, Kwong W H, et al. Effects of the support material addition on the hydrodynamic behavior of an anaerobic expanded granular sludge bed reactor. Journal of Environmental Sciences, 2017, 54: 224-230.
doi: 10.1016/j.jes.2016.02.011
[53]   Xu S Y, He C Q, Luo L W, et al. Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester. Bioresource Technology, 2015, 196: 606-612.
doi: 10.1016/j.biortech.2015.08.018 pmid: 26298405
[54]   Chen C M, Yao X Y, Li Q X, et al. Turf soil enhances treatment efficiency and performance of phenolic wastewater in an up-flow anaerobic sludge blanket reactor. Chemosphere, 2018, 204: 227-234.
doi: S0045-6535(18)30682-9 pmid: 29660535
[55]   韩剑宏, 倪文, 江翰. 投加硬硅钙纤维粒对UASB低温运行的影响. 中国给水排水, 2003, 19(10): 14-17.
[55]   Han J H, Ni W, Jiang H. Influence of addition of xonotlite fibrous particle on UASB operation at low temperature. China Water & Wastewater, 2003, 19(10): 14-17.
[56]   Yu H Q, Tay J H, Fang H H P. The roles of calcium in sludge granulation during uasb reactor start-up. Water Research, 2001, 35(4): 1052-1060.
pmid: 11235871
[57]   Vlyssides A, Barampouti E M, Mai S. Influence of ferrous iron on the granularity of a UASB reactor. Chemical Engineering Journal, 2009, 146(1): 49-56.
doi: 10.1016/j.cej.2008.05.011
[58]   Liu Y W, Zhang Y B, Ni B J. Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors. Water Research, 2015, 75: 292-300.
doi: 10.1016/j.watres.2015.02.056 pmid: 25867207
[59]   Liu Y W, Zhang Y B, Quan X, et al. Applying an electric field in a built-in zero valent iron - Anaerobic reactor for enhancement of sludge granulation. Water Research, 2011, 45(3): 1258-1266.
doi: 10.1016/j.watres.2010.10.002
[60]   Ding Y C, Feng H J, Huang W K, et al. A sustainable method for effective regulation of anaerobic granular sludge: artificially increasing the concentration of signal molecules by cultivating a secreting strain. Bioresource Technology, 2015, 196: 273-278.
doi: 10.1016/j.biortech.2015.07.066 pmid: 26253911
[61]   Wang J X, Liang J D, Sun L, et al. PVA/CS and PVA/CS/Fe gel beads’ synthesis mechanism and their performance in cultivating anaerobic granular sludge. Chemosphere, 2019, 219: 130-139.
doi: 10.1016/j.chemosphere.2018.12.014
[62]   Bastiani C D, Alba J L, Mazzarotto G T, et al. Three-phase hydrodynamic simulation and experimental validation of an upflow anaerobic sludge blanket reactor. Computers & Mathematics With Applications, 2021, 83: 95-110.
doi: 10.1016/j.camwa.2020.02.017
[63]   Baeten J E, Batstone D J, Schraa O J, et al. Modelling anaerobic, aerobic and partial nitritation-anammox granular sludge reactors: A review. Water Research, 2019, 149: 322-341.
doi: S0043-1354(18)30947-3 pmid: 30469019
[64]   Izadi P, Izadi P, Eldyasti A. Development of long-term dynamic BioWin® model simulation for ANAMMOX UASB micro-granular process. Chemosphere, 2022, 286: 131859.
doi: 10.1016/j.chemosphere.2021.131859
[65]   Odriozola M, López I, Borzacconi L. Modeling Granule development and reactor performance on anaerobic granular sludge reactors. Journal of Environmental Chemical Engineering, 2016, 4(2): 1615-1628.
doi: 10.1016/j.jece.2016.01.040
[66]   Xu H, Liu Y B, Gao Y Y, et al. Granulation process in an expanded granular sludge blanket (EGSB) reactor for domestic sewage treatment: impact of extracellular polymeric substances compositions and evolution of microbial population. Bioresource Technology, 2018, 269: 153-161.
doi: S0960-8524(18)31204-5 pmid: 30172178
[67]   Yang B, Wang M, Wang J F, et al. Mechanism of high contaminant removal performance in the expanded granular sludge blanket (EGSB) reactor involved with granular activated carbon for low-strength wastewater treatment. Chemical Engineering Journal, 2018, 334: 1176-1185.
doi: 10.1016/j.cej.2017.11.072
[68]   Zhang Y D, Zhang L, Guo B, et al. Granular activated carbon stimulated microbial physiological changes for enhanced anaerobic digestion of municipal sewage. Chemical Engineering Journal, 2020, 400: 125838.
doi: 10.1016/j.cej.2020.125838
[69]   Liu Y Y, Huang L H, Dong G H, et al. Enhanced granulation and methane recovery at low load by downflow sludge circulation in anaerobic treatment of domestic wastewater. Bioresource Technology, 2018, 249: 851-857.
doi: S0960-8524(17)31922-3 pmid: 29136941
[70]   Trego A C, Holohan B C, Keating C, et al. First proof of concept for full-scale, direct, low-temperature anaerobic treatment of municipal wastewater. Bioresource Technology, 2021, 341: 125786.
doi: 10.1016/j.biortech.2021.125786
[71]   张博康, 张岩, 陈昌明, 等. AnGMBR处理低浓度废水的运行特性. 中国环境科学, 2018, 38(8): 2954-2959.
[71]   Zhang B K, Zhang Y, Chen C M, et al. Characteristics of anaerobic granular sludge bed membrane bioreactor for dilute wastewater treatment. China Environmental Science, 2018, 38(8): 2954-2959.
[72]   Sanchez L, Carrier M, Cartier J, et al. Enhanced organic degradation and biogas production of domestic wastewater at psychrophilic temperature through submerged granular anaerobic membrane bioreactor for energy-positive treatment. Bioresource Technology, 2022, 353: 127145.
doi: 10.1016/j.biortech.2022.127145
[73]   -Serrano León E, Perales Vargas-Machuca J A, Lara Corona E, et al. Anaerobic digestion of municipal sewage under psychrophilic conditions. Journal of Cleaner Production, 2018, 198: 931-939.
doi: 10.1016/j.jclepro.2018.07.060
[74]   赵来利, 佘宗莲, 高孟春. 常温下ABR处理低浓度废水性能及污泥特性. 环境工程学报, 2010, 4(4): 761-766.
[74]   Zhao L L, She Z L, Gao M C. Treatment of low strength wastewater and sludge characteristics in anaerobic baffled reactor at normal temperatures. Chinese Journal of Environmental Engineering, 2010, 4(4): 761-766.
[75]   杜接弟, 王毅力, 李炯, 等. HRT对ABR处理低浓度废水的效果和颗粒污泥特征的影响. 环境科学, 2009, 30(7): 2022-2029.
[75]   Du J D, Wang Y L, Li J, et al. Impact of hydraulic retention time (HRT) in ABR on its operation performance and granular sludge characteristics when treating low-strength wastewater. Environmental Science, 2009, 30(7): 2022-2029.
[76]   任洪强, 丁丽丽, 陈坚, 伦世仪. EGSB反应器中颗粒污泥床工作状况及污泥性质研究. 环境科学研究, 2001, 14(3): 33-36, 41.
[76]   Ren H Q, Ding L L, Chen J, et al. Study on the characteristics of granular sludge bed and granular sludge in EGSB reactor. Research of Environmental Sciences, 2001, 14(3): 33-36, 41.
[77]   周焕祥, 汪艳雯, 房爱东, 等. EGSB厌氧反应器在造纸废水处理中的应用. 造纸科学与技术, 2013, 32(2): 97-100.
[77]   Zhou H X, Wang Y W, Fang A D, et al. Application of EGSB anaerobic reactors in pulp and paper effluent treatment. Paper Science & Technology, 2013, 32(2): 97-100.
[78]   Yang B, Xu H, Yang S N, et al. Treatment of industrial dyeing wastewater with a pilot-scale strengthened circulation anaerobic reactor. Bioresource Technology, 2018, 264: 154-162.
doi: S0960-8524(18)30723-5 pmid: 29803085
[79]   Wang J D, Yan J J, Xu W J. Treatment of dyeing wastewater by MIC anaerobic reactor. Biochemical Engineering Journal, 2015, 101: 179-184.
doi: 10.1016/j.bej.2015.06.001
[80]   Xu F, Huang Z X, Miao H F, et al. Identical full-scale biogas-lift reactors (BLRs) with anaerobic granular sludge and residual activated sludge for brewery wastewater treatment and kinetic modeling. Journal of Environmental Sciences, 2013, 25(10): 2031-2040.
doi: 10.1016/S1001-0742(12)60268-X
[81]   王立军, 于德利, 庞维珍, 等. 浓缩苹果汁高浓度有机废水处理工程的改造. 中国给水排水, 2006, 22(24): 35-37.
[81]   Wang L J, Yu D L, Pang W Z, et al. Modification of treatment of high-concentration organic wastewater from concentrated fruit juice production. China Water & Wastewater, 2006, 22(24): 35-37.
[82]   Zhang L G, Ban Q Y, Li J Z, et al. Simultaneous production of hydrogen-methane and spatial community succession in an anaerobic baffled reactor treating corn starch processing wastewater. Chemosphere, 2022, 300: 134503.
doi: 10.1016/j.chemosphere.2022.134503
[83]   Lu X Q, Zhen G Y, Estrada A L, et al. Operation performance and granule characterization of upflow anaerobic sludge blanket (UASB) reactor treating wastewater with starch as the sole carbon source. Bioresource Technology, 2015, 180: 264-273.
doi: 10.1016/j.biortech.2015.01.010 pmid: 25617619
[84]   于鲁冀, 王惠英, 陈涛, 等. 改良UASB处理玉米酒精废水的启动研究. 中国给水排水, 2013, 29(1): 26-29.
[84]   Yu L J, Wang H Y, Chen T, et al. Start-up of modified UASB for treatment of corn alcohol wastewater. China Water & Wastewater, 2013, 29(1): 26-29.
[85]   Su C Y, Lu Y X, Qin J J, et al. Performance and microbial community structure characterization of a CIC anaerobic reactor for the treatment of cassava wastewater. Ecological Engineering, 2017, 108: 114-122.
doi: 10.1016/j.ecoleng.2017.08.011
[86]   Cui P Y, Zhou X F, Zhang Y L. The feasibility study of cotton pulp wastewater treatment with IC anaerobic reactor. Procedia Environmental Sciences, 2011, 11: 686-692.
doi: 10.1016/j.proenv.2011.12.107
[87]   Farhadian M, Borghei M, Umrania V V. Treatment of beet sugar wastewater by UAFB bioprocess. Bioresource Technology, 2007, 98(16): 3080-3083.
pmid: 17391955
[88]   Chen H, Wei Y X, Liang P, et al. Performance and microbial community variations of a upflow anaerobic sludge blanket (UASB) reactor for treating monosodium glutamate wastewater: effects of organic loading rate. Journal of Environmental Management, 2020, 253: 109691.
doi: 10.1016/j.jenvman.2019.109691
[89]   王江全. 柠檬酸废水处理工艺: IC厌氧反应器和好氧生化技术. 江苏环境科技, 2000, 13(3): 21-23.
[89]   Wang J Q. Sewage treatment process of citric acid. Jiang Su Environmental Science and Technology, 2000, 13(3): 21-23.
[90]   Oktem Y A, Ince O, Sallis P, et al. Anaerobic treatment of a chemical synthesis-based pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor. Bioresource Technology, 2008, 99(5): 1089-1096.
pmid: 17449241
[91]   Chen C M, Liang J H, Yoza B A, et al. Evaluation of an up-flow anaerobic sludge bed (UASB) reactor containing diatomite and maifanite for the improved treatment of petroleum wastewater. Bioresource Technology, 2017, 243: 620-627.
doi: S0960-8524(17)31075-1 pmid: 28709066
[92]   Su C Y, Li W G, Lu Y X, et al. Effect of heterogeneous Fenton-like pre-treatment on anaerobic granular sludge performance and microbial community for the treatment of traditional Chinese medicine wastewater. Journal of Hazardous Materials, 2016, 314: 51-58.
doi: S0304-3894(16)30365-X pmid: 27107235
[93]   Su C Y, Zheng P, Lin X M, et al. Influence of amoxicillin after pre-treatment on the extracellular polymeric substances and microbial community of anaerobic granular sludge. Bioresource Technology, 2019, 276: 81-90.
doi: S0960-8524(18)31775-9 pmid: 30611090
[94]   Lin J C T, Liu Y S, Wang W K. A full-scale study of high-rate anaerobic bioreactors for whiskey distillery wastewater treatment with size fractionation and metagenomic analysis of granular sludge. Bioresource Technology, 2020, 306: 123032.
doi: 10.1016/j.biortech.2020.123032
[95]   Wang W K, Ni C H, Guo Y J, et al. Long-term performance and metagenomic analysis of full-scale anaerobic granular sludge bioreactors for low aerobically-biodegradable synthetic fiber manufacturing wastewater treatment. International Biodeterioration & Biodegradation, 2020, 153: 105046.
[96]   Hu Q, Sun J J, Sun D Z, et al. Simultaneous Cr(VI) bio-reduction and methane production by anaerobic granular sludge. Bioresource Technology, 2018, 262: 15-21.
doi: S0960-8524(18)30573-X pmid: 29689436
[97]   Zeng T T, Rene E R, Zhang S Q, et al. Removal of selenate and cadmium by anaerobic granular sludge: EPS characterization and microbial community analysis. Process Safety and Environmental Protection, 2019, 126: 150-159.
doi: 10.1016/j.psep.2019.03.039
[98]   Feng S S, Hou S X, Huang X, et al. Insights into the microbial community structure of anaerobic digestion of municipal solid waste landfill leachate for methane production by adaptive thermophilic granular sludge. Electronic Journal of Biotechnology, 2019, 39: 98-106.
doi: 10.1016/j.ejbt.2019.04.001
[99]   Zeng Z, Zhang M, Kang D, et al. Enhanced anaerobic treatment of swine wastewater with exogenous granular sludge: performance and mechanism. Science of the Total Environment, 2019, 697: 134180.
doi: 10.1016/j.scitotenv.2019.134180
[100]   方奕涛, 黄智, 敖正粉, 等. 厌氧颗粒污泥工艺处理木材加工废水研究. 环境科学与技术, 2020, 43(6): 78-84.
[100]   Fang Y T, Huang Z, Ao Z F, et al. Treatment of wood processing wastewater by anaerobic granular sludge process. Environmental Science & Technology, 2020, 43(6): 78-84.
[1] YAN Zhi-chao,SONG Meng-hua,LIU Jian-ping,HUANG Qiang. Molecular Simulation-based Continuous Optimization of Nucleic-acid Aptamers Against Tetrodotoxin[J]. China Biotechnology, 2022, 42(8): 1-12.
[2] Hao-yi MENG,Dan-yang LI,Zheng-yang SUN,Zhao-yong YANG,Zhi-fei ZHANG,Li-jie YUAN. Substrate-binding Site of Ubiquitous Mitochondrial Creatine Kinase from Homo sapiens[J]. China Biotechnology, 2018, 38(5): 24-32.
[3] ZHANG Huai jin, ZHANG Jing jing, ZHOU Jin, JIN Hui, CAI Zhong hua. Cultivation of Haematococcus pluvialis on Urban Sewage[J]. China Biotechnology, 2016, 36(11): 39-47.
[4] TANG Xiao-hong, CHANG Ying, HUANG He, GAO Zhen, YIN Ji-long, JI Xiao-jun. The Advancement of CO2 Biological Trapping and Wastewater Ecological Recovery Based on Microalgae Cultivation.[J]. China Biotechnology, 2011, 31(9): 124-131.
[5] LI Yan, LONG Zhu, JIANG Hua, LI Hai-Feng, FENG Fei. Preparation and Application of Modified Chitosan Magnetic Particle Flocculant in Treatment for Wastewater of Pulping and Papermaking[J]. China Biotechnology, 2010, 30(06): 65-69.
[6] WANG Xu-Dong, LI Xiao-Hui, SU Zhi-Guo, XIU Zhi-Long. Site-specific PEGylation Strategies and Suitable Modified Sites of Protein Drugs[J]. China Biotechnology, 2010, 30(04): 101-109.
[7] . Effect of dissolved oxygen on glycerol production by Candida glycerinogenes[J]. China Biotechnology, 2008, 28(5): 65-70.
[8] . Application and Progress on Treatment of Wastewater Using Yeasts[J]. China Biotechnology, 2007, 27(11): 99-104.
[9] . Construction of a Novel Eukaryotic Expression Plasmid pcDNA6/myc-his-EGFP B and Its Applications in Expression of Recombinant Genes[J]. China Biotechnology, 2006, 26(12): 22-28.