Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (10): 21-30    DOI: 10.13523/j.cb.2206011
    
Study on the Performance of Oxidative Diesel Desulfurization Catalyzed by Bioenzyme/γ-Al2O3 Spheres
Shuang JIN,Yun-song YANG,Jin-hua LIANG,Xiao-rui YANG,Xiao-tong LI,Jian-liang ZHU*()
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
Download: HTML   PDF(2462KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The bioenzymes were loaded on the γ-Al2O3 spherical carrier by adsorption method, and the bioenzymes/γ-Al2O3 and the carrier were characterized by scanning electron microscopy (SEM), specific surface area analysis (BET), Fourier infrared spectroscopy (FT-IR) and circular dichroism (CD). The results showed that the bioenzymes were adsorbed on the carriers. The prepared bioenzyme/γ-Al2O3 catalyzed oxidative desulfurization of real diesel fuel, and the effects of reaction temperature, reaction flow rate and enzyme solution concentration on the desulfurization effect of real diesel fuel were investigated, and qualitative and quantitative analyses of the desulfurization effect were performed; further response surface design optimization of the desulfurization process conditions was carried out to find out the optimal reaction conditions. The experimental results showed that the optimum desulfurization rate of 93.16% was derived from the reaction temperature of 49℃, reaction flow rate of 1.0 mL/min and enzyme solution concentration of 15.5% (enzyme loading of 28.13 g). Finally, the performance of the immobilized enzyme was investigated for repeated use, and the activity of the catalyst did not decrease significantly after seven uses, indicating that the immobilized enzyme is effective in catalyzing oxidative diesel desulfurization and has potential application value.



Key wordsDiesel      Immobilized enzymes      Oxidation desulfurization      Responsive surface design     
Received: 10 June 2022      Published: 04 November 2022
ZTFLH:  Q819  
Corresponding Authors: Jian-liang ZHU     E-mail: jlzhu@njtech.edu.cn
Cite this article:

Shuang JIN,Yun-song YANG,Jin-hua LIANG,Xiao-rui YANG,Xiao-tong LI,Jian-liang ZHU. Study on the Performance of Oxidative Diesel Desulfurization Catalyzed by Bioenzyme/γ-Al2O3 Spheres. China Biotechnology, 2022, 42(10): 21-30.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2206011     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I10/21

噻吩类化合物类型 结构
噻吩
二苯并噻吩
苯并噻吩
4,6-二甲基二苯并噻吩
Table 1 Main thiophene substances in diesel fuel
Fig.1 Schematic diagram of reactor unit
Fig.2 FT-IR spectra of enzyme catalysts before and after reaction
Fig.3 SEM images before and after immobilization of the enzyme on the carrier (a) Blank carrier (b) Immobilized enzyme post-vector
Fig.4 N2 adsorption and desorption isotherms before and after enzyme loading
Fig.5 BJH aperture distribution before and after loading
Fig.6 Enzyme protein CD analysis map
Fig.7 Effect of reaction temperature on desulfurization rate of real diesel
Fig.8 Effect of reaction flow rate on desulfurization of real diesel
浸泡液浓度/% 酶载量/g
10 23.79
15 27.86
20 32.36
25 36.32
30 40.28
Table 2 Different enzyme solution immersion carrier enzyme load
Fig.9 Effect of enzyme solution concentration on desulfurization of real diesel oil
Fig.10 Sulfate concentration standard curve
编号 反应温度
/℃
反应流速
/(mL/min)
酶溶液浓度
/%
脱硫率
/%
1 50 1.20 10 77.47
2 60 0.80 15 48.76
3 50 1.00 15 92.43
4 40 1.20 15 65.88
5 50 1.00 15 91.78
6 40 0.80 15 64.15
7 60 1.00 20 51.56
8 40 1.00 20 61.48
9 50 0.80 20 80.03
10 50 1.20 20 81.75
11 40 1.00 10 58.95
12 60 1.00 10 45.99
13 60 1.20 15 50.18
14 50 1.00 15 90.86
15 50 1.00 15 92.86
16 50 1.00 15 91.05
17 50 0.80 10 79.51
Table 3 Response surface experimental design and results
来源 平方和 自由度 均方 F P
模型 4 684.53 9 520.50 255.53 <0.000 1
A 364.10 1 364.10 178.74 <0.000 1
B 1.00 1 1.00 0.49 0.505 9
C 20.80 1 20.80 10.21 0.015 2
AB 0.024 1 0.024 0.012 0.916 6
AC 2.31 1 2.31 1.13 0.322 2
BC 3.53 1 3.53 1.74 0.229 2
A2 3 757.77 1 3 757.77 1 844.78 <0.000 1
B2 92.19 1 92.19 45.26 0.000 3
C2 232.24 1 232.24 114.01 <0.000 1
残差 14.26 7 2.04
失拟误差 11.29 3 3.76 5.07 0.075 3
纯误差 2.97 4 0.74
总和 4 698.78 16
标准偏差=1.43 R2=0.9970
均值=72.04 校正后R2=9931
变异系数=1.98 预测R2=0.9606
误差平方和=185.31 信噪比=42.407
Table 4 Response surface experimental data analysis
Fig.11 Horizontal three-dimensional curved surface diagram of the influence of various factors on desulfurization rate (a) Response surface of reaction temperature and reaction flow rate on desulfurization rate (b) Response surface of reaction temperature and enzyme solution concentration on desulfurization rate (c) Response surface of reaction flow rate and enzyme solution concentration on desulfurization rate
Fig.12 Performance test of real diesel desulfurization catalyst
[1]   刘锐宇. 生物柴油的研究现状及展望. 石化技术, 2022, 29(1): 186-187.
[1]   Liu R Y. Research status and prospect of biodiesel. Petrochemical Industry Technology, 2022, 29(1): 186-187.
[2]   Li S Z, Mominou N, Wang Z W, et al. Ultra-deep desulfurization of gasoline with CuW/TiO2-GO through photocatalytic oxidation. Energy & Fuels, 2016, 30(2): 962-967.
[3]   吴美璇, 赵子宇, 李浩, 等. 不同工作条件对柴油机尾气污染物排放特性的影响综述. 土木与环境工程学报, 2022, 44(1): 197-206.
[3]   Wu M X, Zhao Z Y, Li H, et al. Influence of different working conditions on emission characteristics of pollutants in diesel engine exhaust: a review. Journal of Civil and Environmental Engineering, 2022, 44(1): 197-206.
[4]   朱全力, 赵旭涛, 赵振兴, 等. 加氢脱硫催化剂与反应机理的研究进展. 分子催化, 2006, 20(4): 372-383.
[4]   Zhu Q L, Zhao X T, Zhao Z X, et al. Research progress on hydrodesulfurization catalysts and reaction mechanism. Journal of Molecular Catalysis, 2006, 20(4): 372-383.
[5]   王涛, 余文卉, 李谭香凝, 等. 离子液体在萃取氧化脱硫中的应用与研究进展. 应用化工, 2020, 49(2): 452-457.
[5]   Wang T, Yu W H, Li T X N, et al. Application and research progress of extraction-oxidation desulfurization using ionic liquids. Applied Chemical Industry, 2020, 49(2): 452-457.
[6]   陈政利, 韩娜, 苏炜, 等. Co-β-SBA-15催化氧化脱硫性能研究. 现代化工, 2019, 39(5): 177-181.
[6]   Chen Z L, Han N, Su W, et al. Study on performance of Co-β-SBA-15 in catalytic oxidation desulfurization. Modern Chemical Industry, 2019, 39(5): 177-181.
[7]   Jumina, Kurniawan Y S, Purwono B, et al. Science and technology progress on the desulfurization process of crude oil. Bulletin of the Korean Chemical Society, 2021, 42(8): 1066-1081.
doi: 10.1002/bkcs.12342
[8]   刘朋, 赵锐铭, 梁刚. 国内柴油加氢脱硫技术的影响因素分析. 齐鲁石油化工, 2020, 48(3): 265-270.
[8]   Liu P, Zhao R M, Liang G. Analysis on influencing factors for diesel hydrodesulfurization technology in domestic. Qilu Petrochemical Technology, 2020, 48(3): 265-270.
[9]   杨运松, 梁金花, 杨晓瑞, 等. 柴油生物酶催化氧化脱硫的研究进展. 中国生物工程杂志, 2021, 41(10): 109-115.
[9]   Yang Y S, Liang J H, Yang X R, et al. Research progress in oxidative desulfurization of diesel oil catalyzed by enzymes. China Biotechnology, 2021, 41(10): 109-115.
[10]   Lateef S A, Ajumobi O O, Onaizi S A. Enzymatic desulfurization of crude oil and its fractions: a mini review on the recent progresses and challenges. Arabian Journal for Science and Engineering, 2019, 44(6): 5181-5193.
doi: 10.1007/s13369-019-03800-2
[11]   Nassar H N, Abu Amr S S, El-Gendy N S. Biodesulfurization of refractory sulfur compounds in petro-diesel by a novel hydrocarbon tolerable strain Paenibacillus glucanolyticus HN4. Environmental Science and Pollution Research International, 2021, 28(7): 8102-8116.
doi: 10.1007/s11356-020-11090-7
[12]   Bhasarkar J, Borah A J, Goswami P, et al. Mechanistic analysis of ultrasound assisted enzymatic desulfurization of liquid fuels using horseradish peroxidase. Bioresource Technology, 2015, 196: 88-98.
doi: 10.1016/j.biortech.2015.07.063 pmid: 26231128
[13]   Habibi M H, Etemadifari Z, Emtiazi G, et al. Synergic effects of photocatalytic and enzymatic degradation of dibenzothiophene by titania nanolayer coated on glass and intracellular enzymes. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2015, 45(12): 1759-1763.
doi: 10.1080/15533174.2013.871733
[14]   Karimi A M, Sadeghi S, Salimi F. Biodesulphurization of thiophene as a sulphur model compound in crude oils by Pseudomonas aeruginosa supported on polyethylene. Ecological Chemistry and Engineering S, 2017, 24(3): 371-379.
doi: 10.1515/eces-2017-0024
[15]   Juarez-Moreno K, Díaz de León J N, Zepeda T A, et al. Oxidative transformation of dibenzothiophene by chloroperoxidase enzyme immobilized on (1D)-γ-Al2O3 nanorods. Journal of Molecular Catalysis B: Enzymatic, 2015, 115: 90-95.
doi: 10.1016/j.molcatb.2015.02.004
[16]   Ayala M, Hernandez-Lopez E L, Perezgasga L, et al. Reduced coke formation and aromaticity due to chloroperoxidase-catalyzed transformation of asphaltenes from Maya crude oil. Fuel, 2012, 92(1): 245-249.
doi: 10.1016/j.fuel.2011.06.067
[17]   Ryu K, Heo J, Yoo I. Removal of dibenzothiophene and its oxidized product in anhydrous water-immiscible organic solvents by immobilized cytochrome C. Biotechnology Letters, 2004, 24: 143-146.
doi: 10.1023/A:1013806830105
[1] YANG Yun-song,LIANG Jin-hua,YANG Xiao-rui,MA Yi-ming,JIN Shuang,SUN Yao-yao,ZHU Jian-liang. Research Progress in Oxidative Desulfurization of Diesel Oil Catalyzed by Enzymes[J]. China Biotechnology, 2021, 41(10): 109-115.
[2] YANG Kai, ZHAN Jing-ming, GAO Fen-fang, WU Bao-li, SU Li-xia, ZHOU Wen-ming, XUE Xiang-ming, HAO Jie, ZHAO Yang. Research of Chlorella on the Production of Biodiesel[J]. China Biotechnology, 2015, 35(11): 99-104.
[3] LEI Xue-qing, LU Zhe, GAO Bao-yan, ZHANG Wen-yuan, LI Ai-fen, ZHANG Cheng-wu. The Growth and Lipids Accumulation Pattern of Oleaginous Green Microalga Scenedesmus acuminatus Large Volume Cultured in Flat Panel Photobioreactor[J]. China Biotechnology, 2014, 34(11): 91-99.
[4] LIU Hui-ying, XUE Dong-hua, PAN An-long, XU Hong-zhang, YE Xiao-jin, SUN Guo-ying. Optimization Process for Catalytic Esterification of Microbial Lipid[J]. China Biotechnology, 2013, 33(3): 92-98.
[5] HU Wen-jun, LUO Wei, LI Han-guang, GU Qiu-ya, YU Xiao-bin. Study on Screening and Identification of Oleaginous Microalgae and Its Oil-producing Charateristic[J]. China Biotechnology, 2012, 32(12): 66-72.
[6] LI Tao, LI Ai-fen, SANG Min, WU Hong, YIN Shun-ji, ZHANG Cheng-wu. Screening Oleaginous Microalgae and Evaluation of the Oil-producing Charateristic[J]. China Biotechnology, 2011, 31(04): 98-105.
[7] ZHENG Hong-Li, GAO Zhen, HUANG He, JI Xiao-Dun, BAI Ti-Hua, LI Wen-Qi. Optimization of Autotrophic Cultivation of Lipids Production for Biodiesel by Chlorella vulgaris with Response Surface Methodology[J]. China Biotechnology, 2010, 30(08): 106-111.
[8] ZHANG Ji, ZHENG Hong-Li, TANG Xiao-Gong, YIN Ji-Long, GAO Zhen, JI Xiao-Dun, LI Wen-Qi, HUANG He. Application of two-level fuzzy comprehensive evaluation in algae screening for biodiesel-producing microalgae[J]. China Biotechnology, 2010, 30(05): 69-75.
[9] JIANG Jin-Ju, MIAO Feng-Ping, FENG Da-Wei, QIN Song. Research Situation and Prospect of Microalgae Biodiesel[J]. China Biotechnology, 2010, 30(02): 134-137.
[10] HU Feng-Qiang, HUI Jing-. Biomaterial Polyhydroxyalkanoate Synthesized from Renewable Biodiesel Coproduct[J]. China Biotechnology, 2009, 29(11): 112-116.
[11] JIA Jin-Lan, MO Min-Xi, WANG Run-Min, LIU Feng, LI Li, HUANG Bin, QIU Guan-Zhou. Current status and progress of microalgal biodiesel[J]. China Biotechnology, 2009, 29(07): 118-126.
[12] ZHENG Hong-Li- Zhang-Ji- Ma-Xiao-Chen- Ji-Xiao-Dun- Jin-Beng- Huang-He. Research progress on bio-diesel-producing microalgae cultivation[J]. China Biotechnology, 2009, 29(03): 110-116.
[13] Deng Yong Junmin Fang Fang Chen Yunwei Chen Chunming Wang. The Current Development of Biofuels[J]. China Biotechnology, 2008, 28(8): 142-147.
[14] WU Yi-Zhen Lin LIN. Bottleneck and countermeasure on biodiesel production by Lipase-catalysis[J]. China Biotechnology, 2008, 28(2): 117-123.
[15] . Research progress on biodiesel production by Lipase catalysis[J]. China Biotechnology, 2008, 28(10): 136-140.