Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (9): 27-38    DOI: 10.13523/j.cb.2205014
    
Molecular Characterization of Novel D-lyxose Isomerases from a Hot Spring Metagenome
SU Ya-li1,CHEN Feng-zhen1,SHI Xian-ai1,2,WANG Guo-zeng1,2,**()
1. College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
2. Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou 350108, China
Download: HTML   PDF(3140KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To explore new thermostable D-lyxose isomerases that can efficiently catalyze the synthesis of rare sugars from the metagenomes of high temperature hot springs. Methods: Metagenomic DNA was extracted from the sediment of Jifei Hot Spring in Changning,Yunnan and subjected to high-throughput sequencing. The D-lyxose isomerase genes were identified by gene annotation and sequence alignment,and heterologous expression vectors were constructed and induced in E. coli. Two recombinant D-lyxose isomerases were purified by affinity chromatography and were characterized. Results: Eight D-lyxose isomerase genes were identified from the metagenomic sequencing results of the Jifei Hot Spring sediment. Four genes were selected for heterologous expression,among which JF-LI1 and JF-LI4 were successfully expressed in E. coli and their enzymatic activities were detected. The optimum temperatures of recombinant JF-LI1 and JF-LI4 were 70℃ and 75℃,respectively. JF-LI4 has a wide action temperature and high thermal stability,which retained more than 40% of its enzymatic activity in the temperature range of 30℃ to 100℃. The optimum pH of recombinant JF-LI1 and JF-LI4 were 7.0 and 7.5,respectively,and they have high activity and stability under neutral and slightly acidic conditions. Recombinant JF-LI1 and JF-LI4 have a broad substrate spectrum and are active on L-ribose,L-ribulose,D-fructose and D-mannose in addition to their most active effect on D-lyxose. The catalytic efficiencies of recombinant JF-LI1 and JF-LI4 for L-ribose were 0.56 and 0.61 L/(mmol·s-1),respectively,which were the highest among the known D-lyxose isomerases. Conclusion: Eight new D-lyxose isomerase genes were obtained from the high temperature hot spring metagenome,and two of them were heterologously expressed and characterized. They have high pH stability,strong thermal stability and wide substrate specificity,which enable them to have important application potential in pharmaceutical industry, food, cosmetics and other industrial fields.



Key wordsD-lyxose isomerase      High temperature hot springs      Metagenome      Rare sugars      Functional sugars     
Received: 06 May 2022      Published: 10 October 2022
ZTFLH:  Q78  
Corresponding Authors: Guo-zeng WANG     E-mail: wanggz@fzu.edu.cn
Cite this article:

SU Ya-li,CHEN Feng-zhen,SHI Xian-ai,WANG Guo-zeng. Molecular Characterization of Novel D-lyxose Isomerases from a Hot Spring Metagenome. China Biotechnology, 2022, 42(9): 27-38.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2205014     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I9/27

引物名称 序列(5'-3') 长度/碱基
JF-LI1-F CTTTAAGAAGGAGATATACCATGATTAAAAGAAGTAAGGCAGAGG 49
JF-LI1-R CAGTGGTGGTGGTGGTGGTGATCTTCTACTATTTCAGTTATTCTTTTTATATC 53
JF-LI4-F CTTTAAGAAGGAGATATACCATGAAGAGAAGAGAATATGAAATGG 45
JF-LI4-R CAGTGGTGGTGGTGGTGGTGATCTTCTATTATTGGAATCCTTTTTATC 48
JF-LI6-F CTTTAAGAAGGAGATATACCATGATTACCGAAAGCCAGTTGCGTCAG 47
JF-LI6-R CAGTGGTGGTGGTGGTGGTGCCCTGGCACCACCTTGGTGATG 42
JF-LI7-F CTTTAAGAAGGAGATATACCATGTTAAGTAAACAAGAAAAAAAGAAAGC 49
JF-LI7-R CAGTGGTGGTGGTGGTGGTGCTTCTCTACTCTAATGATGTTAGG 44
Table 1 Primers used in this study
蛋白名称 氨基酸个数 氨基酸序列一致性最高菌 一致性/ %
JF-LI1 182 Thermoprotei archaeon(RLE72808) 72
JF-LI2 181 Dictyoglomus turgidum(HGB31030) 91
JF-LI3 177 Armatimonadetes bacterium(HGB59748) 86
JF-LI4 180 Dictyoglomus turgidum(PNV80534) 79
JF-LI5 181 Anaerolineae bacterium(MBC7224383) 96
JF-LI6 182 Armatimonadetes bacterium(HHS07368) 99
JF-LI7 179 Thaumarchaeota archaeon(NHV06097) 68
JF-LI8 181 Dictyoglomus thermophilum(WP_149122603) 100
Table 2 Protein sequence analysis of the eight D-lyxose isomerases from the Jifei hot spring metagenome
Fig.1 Phylogenetic tree and heatmap of sequence identities of the eight D-lyxose isomerases from the Jifei hot spring metagenome and those have been characterized Cl-LI: C. laevoribosii(ABI93960.1); Ps-LI: P. stuartii(EDU58657); Bl-LI: B. licheniformis LI(AAU22106.1); Bs-LI: B. subtilis(AIY91703); Dt-LI: D. turgidum(YP_002352606.1); Ts-LI: Thermofilum sp. ex4484_79(OYT29093.1); Cp-LI: C. polysaccharolyticus(WP_026486773.1); Td-LI: T. dichotomicum(WP_175482550); Pb-LI: P. bacterium 1109(KLU40859.1); Ta-LI: T. archaeon(RLE72808.1); To-LI: T. oceani(ADL08607.1); Sp-LI: S. proteamaculans LI(BAJ07463.1); Ka-LI: K. aerogenes LI(WP_154105566.1); Ec-LI: E. coli LI(Q8X5Q7.1)
Fig.2 Protein sequence alignment of the eight D-lyxose isomerases from the Jifei hot spring metagenome and those have been characterized Metal ion binding sites are marked with diamonds and those residues involved in the substrate binding are marked with triangles. The source and GenBank accession numbers are the same as in Fig. 1
Fig.3 SDS-PAGE analysis of the purified recombinant JF-LI1 and JF-LI4 M: Molecular weight protein marker; 1: Uninduced cell lysate; 2: Supernate of induced transformed cell lysate; 3: Precipitate of induced transformed cell lysate; 4: Purified protein
底物 JF-LI1/% JF-LI4/%
D-来苏糖 100 100
L-核糖 94 76
L-核酮糖 38 21
D-甘露糖 21 3.5
D-果糖 12 1.5
D-木糖 0 0
D-葡萄糖 0 0
D-半乳糖 0 0
Table 3 Relative activity of recombinant JF-LI1 and JF-LI4 towards various sugars
Fig.4 Effect of pH on the activity (a) and stability (b) of the recombinant JF-LI1 and JF-LI4
Fig.5 Effect of temperature on the activity (a) and stability (b) of the recombinant JF-LI1 and JF-LI4
微生物来源 最适pH 最适温度/ ℃ 最适金属
离子
Km(D-来
苏糖/L-核糖,
mmol·L-1)
kcat(D-来
苏糖/L-核糖,
1·s-1)
kcat/Km[D-
来苏糖/L-核糖,
L/(mmol·s-1)]
C. laevoribosii[13] 6.5 70 Mn2+ 22.4/121.7 1 902.0/26.4 84.91/0.22
P. stuartii[14] 7.5 45 Mn2+ 47.0/- 31 340.0/- 666.81/-
S. proteamaculans[15] 7.5 40 Mn2+ 13.3/- 30 810.0/- 2 316.54/-
D. turgidum[19] 7.5 75 Co2+ 39.0/- 59.5/- 1.53/-
T. oceani[21] 6.5 65 Mn2+ 15.5/- 51.8/- 3.34/-
T. dichotomicum[23] 7.5 60 Mn2+ 43.5/98.5 42.7/5.4 0.98/0.05
B. velezensis[20] 6.5 55 Co2+ 33.1/151 22.3/16.3 0.67/0.11
B. licheniformis[18] 7.5~8.0 40~45 Mn2+ 30.4/- 98.0/- 3.22/-
P. bacterium[22] 7.0 70 Co2+ 51.0/1 130.1 36.1/68.3 0.71/0.06
T. archaeon[24] 6.5 85 Ni2+ 76.1/1 427.9 57.6/466.9 0.76/0.33
C. polysaccharolyticus[25] 6.5 65 Mn2+ 87.1/178 14.4/3.1 0.17/0.02
Thermofilum sp.[26] 7.0 >95 Mn2+ 74/- 129.6/- 1.75/-
E. coli O157:H7[16] 7.5 50 Mn2+ 16.1/- 13.7/- 0.85/-
温泉宏基因组(JF-LI1) 7.0 70 Co2+ 15.5/19.6 63.0/11.0 4.06/0.56
温泉宏基因组(JF-LI4) 7.5 75 Co2+ 15.8/36.7 88.6/22.6 5.61/0.62
Table 4 Comparison of biochemical properties of D-lyxose isomerases from various source
Fig.6 Effect of various metal ions on the activity of JF-LI1 and JF-LI4
Fig.7 Kinetic parameters of JF-LI1and JF-LI4 towards D-lyxose and L-ribose (a) Kinetic parameters of JF-LI1 towards D-lyxose (b) Kinetic parameters of JF-LI1 towards L-ribose (c) Kinetic parameters of JF-LI4 towards D-lyxose (d) Kinetic parameters of JF-LI4 towards L-ribose
[1]   Ahmed A, Khan T A, Dan Ramdath D, et al. Rare sugars and their health effects in humans: a systematic review and narrative synthesis of the evidence from human trials. Nutrition Reviews, 2022, 80(2): 255-270.
doi: 10.1093/nutrit/nuab012
[2]   Smith A, Avery A, Ford R, et al. Rare sugars: metabolic impacts and mechanisms of action: a scoping review. The British Journal of Nutrition, 2021, 128(3): 1-18.
doi: 10.1017/S0007114521002841
[3]   黄培煜, 陈依军, 吴旭日. 稀有糖生理活性的研究进展. 药物生物技术, 2017, 24(5): 436-439.
[3]   Huang P Y, Chen Y J, Wu X R. Research progress in physiological activity of rare sugars. Pharmaceutical Biotechnology, 2017, 24(5): 436-439.
[4]   Guerrero-Wyss M, Durán Agüero S, Angarita Dávila L. D-tagatose is a promising sweetener to control glycaemia: a new functional food. BioMed Research International, 2018, 2018: 8718053.
[5]   Zhang W L, Chen D, Chen J J, et al. D-allulose, a versatile rare sugar: recent biotechnological advances and challenges. Critical Reviews in Food Science and Nutrition, 2021: 1-19. DOI: 10.1080/10408398.2021.2023091.
doi: 10.1080/10408398.2021.2023091
[6]   黄擎宇, 徐铮, 李莎, 等. 医药中间体L-核糖的生物制造研究进展. 工业微生物, 2019, 49(3): 61-69.
[6]   Huang Q Y, Xu Z, Li S, et al. Research progress in bio-manufacture pharmaceutical intermediate L-ribose. Industrial Microbiology, 2019, 49(3): 61-69.
[7]   Chen M, Wu H, Zhang W L, et al. Microbial and enzymatic strategies for the production of L-ribose. Applied Microbiology and Biotechnology, 2020, 104(8): 3321-3329.
doi: 10.1007/s00253-020-10471-9 pmid: 32088757
[8]   林清泉, 刘有才, 李丽峰, 等. 稀有糖的制备及应用最新进展. 食品与发酵工业, 2013, 39(6): 146-151.
[8]   Lin Q Q, Liu Y C, Li L F, et al. The latest progress in preparation and application of uncommon sugars. Food and Fermentation Industries, 2013, 39(6): 146-151.
[9]   Beerens K, Desmet T, Soetaert W. Enzymes for the biocatalytic production of rare sugars. Journal of Industrial Microbiology and Biotechnology, 2012, 39(6): 823-834.
doi: 10.1007/s10295-012-1089-x pmid: 22350065
[10]   Zhang W L, Zhang T, Jiang B, et al. Enzymatic approaches to rare sugar production. Biotechnology Advances, 2017, 35(2): 267-274.
doi: S0734-9750(17)30004-6 pmid: 28111316
[11]   Granström T B, Takata G, Tokuda M, et al. Izumoring: a novel and complete strategy for bioproduction of rare sugars. Journal of Bioscience and Bioengineering, 2004, 97(2): 89-94.
pmid: 16233597
[12]   Huang J W, Chen Z W, Zhang W L, et al. D-lyxose isomerase and its application for functional sugar production. Applied Microbiology and Biotechnology, 2018, 102(5): 2051-2062.
doi: 10.1007/s00253-018-8746-6 pmid: 29392387
[13]   Cho E A, Lee D W, Cha Y H, et al. Characterization of a novel D-lyxose isomerase from Cohnella laevoribosii RI-39 sp. nov. Journal of Bacteriology, 2007, 189(5): 1655-1663.
doi: 10.1128/JB.01568-06
[14]   Kwon H J, Yeom S J, Park C S, et al. Substrate specificity of a recombinant D-lyxose isomerase from Providencia stuartii for monosaccharides. Journal of Bioscience and Bioengineering, 2010, 110(1): 26-31.
doi: 10.1016/j.jbiosc.2009.12.011
[15]   Park C S, Yeom S J, Lim Y R, et al. Substrate specificity of a recombinant D-lyxose isomerase from Serratia proteamaculans that produces D-lyxose and D-mannose. Letters in Applied Microbiology, 2010, 51(3): 343-350.
doi: 10.1111/j.1472-765X.2010.02903.x pmid: 20695994
[16]   van Staalduinen L M, Park C S, Yeom S J, et al. Structure-based annotation of a novel sugar isomerase from the pathogenic E. coli O157: H7. Journal of Molecular Biology, 2010, 401(5): 866-881.
doi: 10.1016/j.jmb.2010.06.063 pmid: 20615418
[17]   Marles-Wright J, Lewis R J. The structure of a D-lyxose isomerase from the σB regulon of Bacillus subtilis. Proteins, 2011, 79(6): 2015-2019.
doi: 10.1002/prot.23028
[18]   Patel D H, Wi S G, Lee S G, et al. Substrate specificity of the Bacillus licheniformis lyxose isomerase YdaE and its application in in vitro catalysis for bioproduction of lyxose and glucose by two-step isomerization. Applied and Environmental Microbiology, 2011, 77(10): 3343-3350.
doi: 10.1128/AEM.02693-10
[19]   Choi J G, Hong S H, Kim Y S, et al. Characterization of a recombinant thermostable D-lyxose isomerase from Dictyoglomus turgidum that produces D-lyxose from D-xylulose. Biotechnology Letters, 2012, 34(6): 1079-1085.
doi: 10.1007/s10529-012-0874-y
[20]   Guo Z R, Long L K, Ding S J. Characterization of a D-lyxose isomerase from Bacillus velezensis and its application for the production of D-mannose and L-ribose. AMB Express, 2019, 9(1): 149.
doi: 10.1186/s13568-019-0877-3
[21]   Yu L N, Zhang W L, Zhang T, et al. Efficient biotransformation of D-fructose to D-mannose by a thermostable D-lyxose isomerase from Thermosediminibacter oceani. Process Biochemistry, 2016, 51(12): 2026-2033.
doi: 10.1016/j.procbio.2016.08.023
[22]   黄嘉苇, 施悦, 张文立, 等. D-来苏糖异构酶的酶学性质研究. 食品与生物技术学报, 2019, 38(1): 83-92.
[22]   Huang J W, Shi Y, Zhang W L, et al. Characterization of recombinant D-lyxose isomerase. Journal of Food Science and Biotechnology, 2019, 38(1): 83-92.
[23]   Zhang W L, Huang J W, Jia M, et al. Characterization of a novel D-lyxose isomerase from Thermoflavimicrobium dichotomicum and its application for D-mannose production. Process Biochemistry, 2019, 83: 131-136.
doi: 10.1016/j.procbio.2019.05.007
[24]   Wu H, Chen M, Guang C E, et al. Identification of a novel recombinant D-lyxose isomerase from Thermoprotei archaeon with high thermostable, weak-acid and nickel ion dependent properties. International Journal of Biological Macromolecules, 2020, 164: 1267-1274.
doi: 10.1016/j.ijbiomac.2020.07.222
[25]   Wu H, Chen M, Guang C E, et al. Characterization of a recombinant D-mannose-producing D-lyxose isomerase from Caldanaerobius polysaccharolyticus. Enzyme and Microbial Technology, 2020, 138: 109553.
doi: 10.1016/j.enzmictec.2020.109553
[26]   de Rose S A, Kuprat T, Isupov M N, et al. Biochemical and structural characterisation of a novel D-lyxose isomerase from the hyperthermophilic archaeon Thermofilum sp. Frontiers in Bioengineering and Biotechnology, 2021, 9: 711487.
doi: 10.3389/fbioe.2021.711487
[27]   Robinson S L, Piel J, Sunagawa S. A roadmap for metagenomic enzyme discovery. Natural Product Reports, 2021, 38(11): 1994-2023.
doi: 10.1039/d1np00006c pmid: 34821235
[28]   Prayogo F A, Budiharjo A, Kusumaningrum H P, et al. Metagenomic applications in exploration and development of novel enzymes from nature: a review. Journal, Genetic Engineering & Biotechnology, 2020, 18(1): 39.
[29]   Rawat N, Shanker A, Joshi G K. Bioinformatics analysis of a novel Glutaredoxin gene segment from a hot spring metagenomic DNA library. Meta Gene, 2018, 18: 107-111.
doi: 10.1016/j.mgene.2018.08.007
[30]   Sahoo R K, Das A, Sahoo K, et al. Characterization of novel metagenomic-derived lipase from Indian hot spring. International Microbiology: the Official Journal of the Spanish Society for Microbiology, 2020, 23(2): 233-240.
[31]   Takeda M, Baba S, Okuma J, et al. Metagenomic mining and structure-function studies of a hyper-thermostable cellobiohydrolase from hot spring sediment. Communications Biology, 2022, 5: 247.
doi: 10.1038/s42003-022-03195-1 pmid: 35318423
[32]   Wang G Z, Meng K, Luo H Y, et al. Phylogenetic diversity and environment-specific distributions of glycosyl hydrolase family 10 xylanases in geographically distant soils. PLoS One, 2012, 7(8): e43480.
doi: 10.1371/journal.pone.0043480
[33]   Friedman M. Food browning and its prevention: an overview. Journal of Agricultural and Food Chemistry, 1996, 44(3): 631-653.
doi: 10.1021/jf950394r
[34]   Yang J G, Zhang T, Tian C Y, et al. Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: advances and perspectives. Biotechnology Advances, 2019, 37(7): 107406.
doi: 10.1016/j.biotechadv.2019.06.005
[35]   Wu H, Huang J W, Deng Y, et al. Production of L-ribose from L-arabinose by co-expression of L-arabinose isomerase and D-lyxose isomerase in Escherichia coli. Enzyme and Microbial Technology, 2020, 132: 109443.
doi: 10.1016/j.enzmictec.2019.109443
[36]   Patel M J, Akhani R C, Patel A T, et al. A single and two step isomerization process for D-tagatose and L-ribose bioproduction using L-arabinose isomerase and D-lyxose isomerase. Enzyme and Microbial Technology, 2017, 97: 27-33.
doi: S0141-0229(16)30226-5 pmid: 28010770
[37]   Huang J W, Yu L N, Zhang W L, et al. Production of d-mannose from d-glucose by co-expression of d-glucose isomerase and d-lyxose isomerase in Escherichia coli. Journal of the Science of Food and Agriculture, 2018, 98(13): 4895-4902.
doi: 10.1002/jsfa.9021
[1] LV Chang-yong, CHEN Chao-yin, GE Feng, LIU Di-qiu, KONG Xiang-jun. The New Development of the Research Method for Molecular Microbial Ecology[J]. China Biotechnology, 2012, 32(08): 111-118.
[2] YANG Jian, CENG Li-Juan, LIAO Sai-Meng, WANG Jing-Yan, DU Li-Qin, HUI Yu-Ta, HUANG Ri-Bei. Cloning and Expression of Complete Gene for α-amylase From Enriched Metagenomic DNA[J]. China Biotechnology, 2010, 30(03): 56-60.