Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (5): 100-105    DOI: 10.13523/j.cb.2111043
    
Research Progress of Bacterial Outer Membrane Vesicles in Anti-tumor Therapy
MAO Lu-jia1,SHI En-yu1,WANG Han-ping1,SHAN Tian-he2,WANG Yin-song2,WANG Yue1,**()
1 Stomatological Hospital, Tianjin Medical University, Tianjin 300070, China
2 Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Therasnostics) & School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
Download: HTML   PDF(420KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Outer membrane vesicles (OMVs) are membrane vesicles with a diameter of 20-300 nm secreted during bacterial growth. They are composed of phospholipids, lipopolysaccharides, proteins, RNA or DNA and so on. OMVs contain a large number of bacterial antigens, which enhance the expression of cytokines and costimulatory molecules by initiating signal transduction pathways, promote antigen presentation and effectively activate the immune system. The virulence factors encapsulated in OMVs can be transmitted to host cells, stimulate the interaction between bacteria and host cells, and have inherent anti-tumor activity. OMVs are conducive to engineering design, and also can be used as an efficient drug delivery carrier to achieve the combination of immunotherapy and chemotherapy-phototherapy, so as to improve the anticancer ability of drugs. They have a good prospect in tumor immunity, tumor engineering vaccine and drug loading, and are considered to be a new means of anti-tumor therapy. This paper summarizes the research progress of bacterial outer membrane vesicles in tumor therapy from the aspects of structure and components, formation mechanism and anti-tumor mechanism, so as to provide reference for the further study and clinical application of bacterial outer membrane vesicles in the future.



Key wordsBacterial outer membrane vesicles      Tumor therapy      Tumor immunity      Drug carriers     
Received: 20 November 2021      Published: 17 June 2022
ZTFLH:  Q819  
Corresponding Authors: Yue WANG     E-mail: wangyue1@tmu.edu.cn
Cite this article:

MAO Lu-jia,SHI En-yu,WANG Han-ping,SHAN Tian-he,WANG Yin-song,WANG Yue. Research Progress of Bacterial Outer Membrane Vesicles in Anti-tumor Therapy. China Biotechnology, 2022, 42(5): 100-105.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2111043     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I5/100

[1]   Kim J H, Lee J, Park J, et al. Gram-negative and gram-positive bacterial extracellular vesicles. Seminars in Cell & Developmental Biology, 2015, 40: 97-104.
[2]   刘畅, 李桂玲. 细菌外膜囊泡的研究及其在医药生物技术领域的应用进展. 中国医药生物技术, 2018, 13(5): 452-457.
[2]   Liu C, Li G L. Research progress on bacterial outer membrane vesicles and applications thereof in the field of medical biotechnology. Chinese Medicinal Biotechnology, 2018, 13(5): 452-457.
[3]   Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nature Reviews Microbiology, 2019, 17 (1): 13-24.
doi: 10.1038/s41579-018-0112-2
[4]   Gerritzen M J H, Martens D E, Wijffels R H, et al. Bioengineering bacterial outer membrane vesicles as vaccine platform. Biotechnology Advances, 2017, 35(5): 565-574.
doi: S0734-9750(17)30055-1 pmid: 28522212
[5]   Jan A T. Outer membrane vesicles (OMVs) of gram-negative bacteria: a perspective update. Frontiers in Microbiology, 2017, 8: 1053.
doi: 10.3389/fmicb.2017.01053
[6]   Silhavy T J, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2010, 2(5): a000414.
[7]   Samsudin F, Ortiz-Suarez M L, Piggot T J, et al. OmpA: a flexible clamp for bacterial cell wall attachment. Structure, 2016, 24(12): 2227-2235.
doi: S0969-2126(16)30317-3 pmid: 27866852
[8]   Szczepaniak J, Press C, Kleanthous C. The multifarious roles of Tol-Pal in Gram-negative bacteria. FEMS Microbiology Reviews, 2020, 44(4): 490-506.
[9]   Schwechheimer C, Kuehn M J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nature Reviews Microbiology, 2015, 13 (10): 605-619.
doi: 10.1038/nrmicro3525 pmid: 26373371
[10]   Florez C, Raab J E, Cooke A C, et al. Membrane distribution of the Pseudomonas quinolone signal modulates outer membrane vesicle production in Pseudomonas aeruginosa. mBio, 2017, 8(4): e01034-e01017.
[11]   Reidl J. Outer membrane vesicle biosynthesis in Salmonella: is there more to gram-negative bacteria? mBio, 2016, 7(4): e01282-e01216.
[12]   Siegel R L, Miller K D, Fuchs H E, et al. Cancer statistics, 2021. CA: A Cancer Journal for Clinicians, 2021, 71(1): 7-33.
doi: 10.3322/caac.21654
[13]   邢续扬, 王孝春, 何伟. 肿瘤免疫治疗及其药物研发进展. 中国药科大学学报, 2021, 52(1): 10-19.
[13]   Xing X Y, Wang X C, He W. Advances in research on tumor immunotherapy and its drug development. Journal of China Pharmaceutical University, 2021, 52(1): 10-19.
[14]   Elmore L W, Greer S F, Daniels E C, et al. Blueprint for cancer research: critical gaps and opportunities. CA: A Cancer Journal for Clinicians, 2021, 71(2): 107-139.
doi: 10.3322/caac.21652 pmid: 33326126
[15]   Kaparakis-Liaskos M, Ferrero R L. Immune modulation by bacterial outer membrane vesicles. Nature Reviews Immunology, 2015, 15 (6): 375-387.
doi: 10.1038/nri3837 pmid: 25976515
[16]   Sanmamed M F, Chen L P. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell, 2018, 175(2): 313-326.
doi: S0092-8674(18)31247-9 pmid: 30290139
[17]   Zhang Y X, Fang Z Y, Li R Z, et al. Design of outer membrane vesicles as cancer vaccines: a new toolkit for cancer therapy. Cancers, 2019, 11(9): 1314.
doi: 10.3390/cancers11091314
[18]   钱颖, 钱晨, 白晓庆, 等. 免疫佐剂在肿瘤免疫疗法中的应用进展. 中国生物工程杂志, 2020, 40(3): 96-103.
[18]   Qian Y, Qian C, Bai X Q, et al. Application of adjuvant in cancer immunotherapy. China Biotechnology, 2020, 40(3): 96-103.
[19]   盛康亮, 张玲玲, 魏伟. 树突状细胞参与免疫调节的相关受体及其介导的信号转导通路研究进展. 细胞与分子免疫学杂志, 2013, 29(9): 997-1000.
[19]   Sheng K L, Zhang L L, Wei W. Research progress on related receptors of dendritic cells involved in immune regulation and their signal transduction pathways. Chinese Journal of Cellular and Molecular Immunology, 2013, 29(9): 997-1000.
[20]   Demento S L, Siefert A L, Bandyopadhyay A, et al. Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends in Biotechnology, 2011, 29(6): 294-306.
doi: 10.1016/j.tibtech.2011.02.004 pmid: 21459467
[21]   常晓彤, 辇晓峰, 王振辉. Toll样受体信号转导途径研究进展. 生理科学进展, 2011, 42(5): 340-346.
[21]   Chang X T, Nian X F, Wang Z H. Progress of research on TLRs-mediated signaling pathway. Progress in Physiological Sciences, 2011, 42(5): 340-346.
[22]   Qing S, Lyu C L, Zhu L, et al. Biomineralized bacterial outer membrane vesicles potentiate safe and efficient tumor microenvironment reprogramming for anticancer therapy. Advanced Materials, 2020, 32(47): 2002085.
doi: 10.1002/adma.202002085
[23]   张婷婷, 仲金秋, 曹玉珠, 等. 干扰素抗肿瘤机制及其治疗肿瘤的研究进展. 中国药理学通报, 2017, 33(9): 1195-1199.
[23]   Zhang T T, Zhong J Q, Cao Y Z, et al. Research progress of interferons in cancer treatment and its mechanism. Chinese Pharmacological Bulletin, 2017, 33(9): 1195-1199.
[24]   Kim O Y, Park H T, Dinh N T H, et al. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nature Communications, 2017, 8: 626.
doi: 10.1038/s41467-017-00729-8
[25]   Zhou J R, Kroll A V, Holay M, et al. Biomimetic nanotechnology toward personalized vaccines. Advanced Materials, 2020, 32(13): 1901255.
doi: 10.1002/adma.201901255
[26]   Kuipers K, Daleke-Schermerhorn M H, Jong W S P, et al. Salmonella outer membrane vesicles displaying high densities of pneumococcal antigen at the surface offer protection against colonization. Vaccine, 2015, 33(17): 2022-2029.
doi: 10.1016/j.vaccine.2015.03.010
[27]   Schetters S T T, Jong W S P, Horrevorts S K, et al. Outer membrane vesicles engineered to express membrane-bound antigen program dendritic cells for cross-presentation to CD8+ T cells. Acta Biomaterialia, 2019, 91: 248-257.
doi: S1742-7061(19)30276-4 pmid: 31003032
[28]   Deo P, Chow S H, Han M L, et al. Mitochondrial dysfunction caused by outer membrane vesicles from Gram-negative bacteria activates intrinsic apoptosis and inflammation. Nature Microbiology, 2020, 5 (11): 1418-1427.
doi: 10.1038/s41564-020-0773-2
[29]   Ding L, Lin X, Lin Z G, et al. Cancer cell-targeted photosensitizer and therapeutic protein co-delivery nanoplatform based on a metal-organic framework for enhanced synergistic photodynamic and protein therapy. ACS Applied Materials & Interfaces, 2020, 12(33): 36906-36916.
[30]   Wai S N, Lindmark B, Söderblom T, et al. Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell, 2003, 115(1): 25-35.
doi: 10.1016/S0092-8674(03)00754-2
[31]   Jiang S N, Park S H, Lee H J, et al. Engineering of bacteria for the visualization of targeted delivery of a cytolytic anticancer agent. Molecular Therapy, 2013, 21(11): 1985-1995.
doi: 10.1038/mt.2013.183
[32]   Tan W Z, Duong M T Q, Zuo C H, et al. Targeting of pancreatic cancer cells and stromal cells using engineered oncolytic Salmonella typhimurium. Molecular Therapy, 2022, 30(2): 662-671.
doi: 10.1016/j.ymthe.2021.08.023
[33]   Thomas S C, Madaan T, Kamble N S, et al. Engineered bacteria enhance immunotherapy and targeted therapy through stromal remodeling of tumors. Advanced Healthcare Materials, 2022, 11(2): 2101487.
doi: 10.1002/adhm.202101487
[34]   Zhuang Q, Xu J, Deng D S, et al. Bacteria-derived membrane vesicles to advance targeted photothermal tumor ablation. Biomaterials, 2021, 268: 120550.
doi: 10.1016/j.biomaterials.2020.120550
[35]   Li M, Zhou H, Jiang W, et al. Nanovaccines integrating endogenous antigens and pathogenic adjuvants elicit potent antitumor immunity. Nano Today, 2020, 35: 101007.
doi: 10.1016/j.nantod.2020.101007
[36]   Li Y, Zhao R, Cheng K, et al. Bacterial outer membrane vesicles presenting programmed death 1 for improved cancer immunotherapy via immune activation and checkpoint inhibition. ACS Nano, 2020, 14 (12): 16698-16711. DOI: 10.1021/acsnano.0c03776.
doi: 10.1021/acsnano.0c03776
[37]   Cheng K, Zhao R, Li Y, et al. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nature Communications, 2021, 12: 2041.
doi: 10.1038/s41467-021-22308-8
[38]   Huang W W, Zhang Q S, Li W R, et al. Development of novel nanoantibiotics using an outer membrane vesicle-based drug efflux mechanism. Journal of Controlled Release, 2020, 317: 1-22.
doi: 10.1016/j.jconrel.2019.11.017
[39]   Kuerban K, Gao X W, Zhang H, et al. Doxorubicin-loaded bacterial outer-membrane vesicles exert enhanced anti-tumor efficacy in non-small-cell lung cancer. Acta Pharmaceutica Sinica B, 2020, 10(8): 1534-1548.
doi: 10.1016/j.apsb.2020.02.002
[40]   Guo Q, Li X, Zhou W, et al. Sequentially triggered bacterial outer membrane vesicles for macrophage metabolism modulation and tumor metastasis suppression. ACS Nano, 2021, 15 (8):13826-13838. DOI: 10.1021/acsnano.1c05613.
doi: 10.1021/acsnano.1c05613
[41]   Li M, Li S, Zhou H, et al. Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nature Communications, 2020, 11: 1126.
doi: 10.1038/s41467-020-14963-0
[42]   Wang D D, Liu C H, You S Q, et al. Bacterial vesicle-cancer cell hybrid membrane-coated nanoparticles for tumor specific immune activation and photothermal therapy. ACS Applied Materials & Interfaces, 2020, 12(37): 41138-41147.
[43]   Chen Q, Bai H Z, Wu W T, et al. Bioengineering bacterial vesicle-coated polymeric nanomedicine for enhanced cancer immunotherapy and metastasis prevention. Nano Letters, 2020, 20(1): 11-21.
doi: 10.1021/acs.nanolett.9b02182 pmid: 31858807
[44]   Peng L H, Wang M Z, Chu Y, et al. Engineering bacterial outer membrane vesicles as transdermal nanoplatforms for photo-TRAIL-programmed therapy against melanoma. Science Advances, 2020, 6(27): eaba2735.
doi: 10.1126/sciadv.aba2735
[45]   Huang X H, Pan J M, Xu F N, et al. Bacteria-based cancer immunotherapy. Advanced Science, 2021, 8(7): 2003572.
doi: 10.1002/advs.202003572
[1] LV Hui-zhong,ZHAO Chen-chen,ZHU Lian,XU Na. Progress of Using Exosome for Drug Targeted Delivery in Tumor Therapy[J]. China Biotechnology, 2021, 41(5): 79-86.
[2] YUAN Bo,WANG Jie-wen,KANG Guang-bo,HUANG He. Research Progress and Application of Bispecific Nanobody[J]. China Biotechnology, 2021, 41(2/3): 78-88.
[3] LU Zhong-teng,HU Gao-wei. Identification Methods of Novel Cell Penetrating Peptides and Application in Antitumor Therapy[J]. China Biotechnology, 2019, 39(12): 50-55.
[4] Xiao-qian PAN,Xiang-yuan XIONG,Yan-chun GONG,Zi-ling LI,Yu-ping LI. Advances in Research of Oral Anticancer Drug Nanocarrier[J]. China Biotechnology, 2018, 38(9): 65-73.
[5] LI Bing-juan, LI Yu-xia, LI Bei-ping, LING Yan, ZHOU Wei, LI Wei-dong, LIN Hai-long, LIANG Long, LIU Gang, ZHANG Jin-hai, CHEN Hui-peng. Construction and Evaluation of the Mutated Anthrax Toxin Proteins as Drug Deliver System for Targeting Tumor Cells[J]. China Biotechnology, 2013, 33(4): 1-8.
[6] DU Juan- Hu-Gong-Gang- Hou-Ling-Ling. Application of IL-13Rα2-directed Toxin Fusion Protein in Tumor Therapy[J]. China Biotechnology, 2009, 29(04): 98-103.