Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (2/3): 138-149    DOI: 10.13523/j.cb.2006016
    
Advances in Promoting Solubility of Prokaryotic Expressed Proteins
ZHANG Lei1,TANG Yong-kai1,2,LI Hong-xia1,2,LI Jian-lin1,2,XU Yu-xin1,LI Ying-bin1,YU Ju-hua1,2,**()
1 Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214128, China
2 Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214128, China
Download: HTML   PDF(605KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The prokaryotic expression protein system, especially Escherichia coli expression system, is a preferred method for obtaining exogenous proteins because of its advantages of simple operation, short cycle, high expression level and relatively low cost. However, one of the major factors to limit the extensive application of E.coli expression protein system is that the exogenous proteins, when expressed in a high amount, are often present in an insoluble form. With the understanding of protein folding dynamics, enzymes and molecular chaperones involved in protein folding, scientists have made great progress in promoting solubility of heterologous proteins by changing expression conditions, modifying host cells or using fusion tags. Here, we review the related progress in order to provide reference for related research.



Key wordsProkaryotic expression      Solubility      Folding enzyme      Molecular chaperone      Fusion tags     
Received: 11 June 2020      Published: 08 April 2021
ZTFLH:  Q819  
Corresponding Authors: Ju-hua YU     E-mail: yujh@ffrc.cn
Cite this article:

ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins. China Biotechnology, 2021, 41(2/3): 138-149.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2006016     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I2/3/138

[1]   Demain A L, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnology Advances, 2009,27(3):297-306.
doi: 10.1016/j.biotechadv.2009.01.008 pmid: 19500547
[2]   刘开泉. 利用原核系统表达富含二硫键蛋白质的探索与改进. 泰安: 山东农业大学, 2011.
[2]   Liu K Q. Exploring and improving the approach for the prokaryotic expression of multi-disulfide bond proteins. Taian: Shandong Agricultural University, 2011.
[3]   吴珊珊, 朱芸, 陈珊珊, 等. 融合标签在蛋白质可溶性表达中的应用进展. 化工进展, 2014,33(4):993-998.
[3]   Wu S S, Zhu Y, Chen S S, et al. Progress in fusion tags and its applications in protein soluble expression. Chemical Industry and Engineering Progress, 2014,33(4):993-998.
[4]   Yin J C, Li G X, Ren X F, et al. Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. Journal of Biotechnology, 2007,127(3):335-347.
pmid: 16959350
[5]   Zhou Z Y, Schnake P, Xiao L H, et al. Enhanced expression of a recombinant malaria candidate vaccine in Escherichia coli by codon optimization. Protein Expression and Purification, 2004,34(1):87-94.
doi: 10.1016/j.pep.2003.11.006 pmid: 14766303
[6]   Daly R, Hearn M T W. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineenring and production. Journal of Molecular Recognition, 2005,18(2):119-138.
pmid: 15565717
[7]   Lee C, Lee S G, Takahashi S, et al. The soluble expression of the human renin binding protein using fusion partners: a comparison of ubiquitin, thioredoxin, maltose binding protein and NusA. Biotechnology and Bioprocess Engineering, 2003,8(2):89-93.
[8]   钟新, 李军生, 阎柳娟, 等. 二硫键在蛋白质中的作用及其氧化改性研究进展. 中国饲料, 2016(17):6-9,19.
[8]   Zhong X, Li J S, Yan L J, et al. The research advance of the role of disulifide bonds of protein and its oxidation modification. China Feed, 2016(17):6-9,19.
[9]   Esposito D, Chatterjee D K. Enhancement of soluble protein expression through the use of fusion tags. Current Opinion in Biotechnology, 2006,17(4):353-358.
doi: 10.1016/j.copbio.2006.06.003 pmid: 16781139
[10]   Vasina J A, Baneyx F. Expression of aggregation-prone recombinant proteins at low temperatures: a comparative study of the Escherichia coli cspA and tac promoter systems. Protein Expression and Purification, 1997,9(2):211-218.
[11]   Srensen H P, Mortensen K K. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial Cell Factories, 2005,4(1):1.
doi: 10.1186/1475-2859-4-1 pmid: 15629064
[12]   Hartinger D, Heinl S, Schwartz H E, et al. Enhancement of solubility in Escherichia coli and purification of an aminotransferase from Sphingopyxis sp. MTA144 for deamination of hydrolyzed fumonisin B1. Microbial Cell Factories, 2010,9(1):62.
doi: 10.1186/1475-2859-9-62
[13]   Kohl T, Schmidt C, Wiemann S, et al. Automated production of recombinant human proteins as resource for proteome research. Proteome Science, 2008,6:4.
[14]   Korf U, Kohl T, van der Zandt H , et al. Large-scale protein expression for proteome research. Proteomics, 2005,5(14):3571-3580.
pmid: 16127724
[15]   柴政斌, 张更林, 王学政, 等. 融合蛋白GST-PADI4可溶性表达条件的优化及纯化. 中国生物制品学杂志, 2014,27(3):404-408,411.
[15]   Chai Z B, Zhang G L, Wang X Z, et al. Optimization of condition for soluble expression of GST-PADI4 fusion protein and purification of expressed product. Chinese Journal of Biologicals, 2014,27(3):404-408,411.
[16]   Turner P, Holst O, Karlsson E N. Optimized expression of soluble cyclomaltodextrinase of thermophilic origin in Escherichia coli by using a soluble fusion-tag and by tuning of inducer concentration. Protein Expression and Purification, 2005,39(1):54-60.
doi: 10.1016/j.pep.2004.09.012 pmid: 15596360
[17]   郁硕, 陈锋, 刘英富, 等. 可溶性GST-CRH蛋白原核表达条件的优化及纯化. 天津医药, 2017,45(2):146-150.
[17]   Yu S, Chen F, Liu Y F, et al. Optimization of prokaryotic expression condition and purification of soluble GST-CRH protein. Tianjin Medical Journal, 2017,45(2):146-150.
[18]   杨瑞, 王淑秀, 陈正跃, 等. 提高基因工程中重组蛋白质表达效率及可溶性产物的一种新方法. 中国临床康复, 2006,10(29):92-93.
[18]   Yang R, Wang S X, Chen Z Y, et al. Enhancement of expression efficiency and solubility of recombinant protein in gene engineering by a new method. Chinese Journal of Clinical Rehabilitation, 2006,10(29):92-93.
[19]   田顺立, 郑春阳. 重组角质细胞生长因子(KGF)的原核表达及优化. 安徽农业科学, 2018,46(33):71-74.
[19]   Tian S L, Zheng C Y. Expression and optimization of recombinant keratinocyte growth factor(KGF) in E.coli. Journal of Anhui Agricultural Sciences, 2018,46(33):71-74.
[20]   Kagawa N, Cao Q W. Osmotic stress induced by carbohydrates enhances expression of foreign proteins in Escherichia coli. Archives of Biochemistry and Biophysics, 2001,393(2):290-296.
doi: 10.1006/abbi.2001.2516 pmid: 11556816
[21]   Schumann W, Ferreira L C S . Production of recombinant proteins in Escherichia coli. Genetics and Molecular Biology, 2004,27(3):442-453.
[22]   徐晓健, 宋长征, 吕丽燕. 化学分子伴侣对重组绵羊IFN-tau在大肠埃希菌中可溶性蛋白表达的影响. 动物医学进展, 2010,31(1):1-5.
[22]   Xu X J, Song C Z, Lü L Y. Effect of chemical chaperones on soluble expression of recombinant ovine interferon-tau in E. coli. Progress in Veterinary Medicine, 2010,31(1):1-5.
[23]   Blackwell J R, Horgan R. A novel strategy for production of a highly expressed recombinant protein in an active form. FEBS Letters, 1991,295(1-3):10-12.
pmid: 1765138
[24]   Sato S, Ward C L, Krouse M E, et al. Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. Journal of Biological Chemistry, 1996,271(2):635-638.
doi: 10.1074/jbc.271.2.635
[25]   杨军兰, 徐焰, 苏明权, 等. 乙醇对结核分枝杆菌Mr 38000蛋白在大肠杆菌中可溶性表达的促进作用. 第四军医大学学报, 2005(4):360-362.
[25]   Yang J L, Xu Y, Su M Q, et al. Ethanol facilitates soluble expression of Mr 38 000 protein of Mycobacterium tuberculosis in E.coli. Journal of the Fourth Military Medical University, 2005(4):360-362.
[26]   Ivanov A V, Korovina A N, Tunit skaya, et al. Development of the system ensuring a high -level expression of hepatitis C virus non-structural NS5B and NS5A proteins. Protein Expr Purif, 2006, ( 48):14-23 .
[27]   Lu J B, Wei D, Wang Y F, et al. High-level expression and single-step purification of recombinant Bacillus anthracis protective antigen from Escherichia coli. Biotechnology and Applied Biochemistry, 2009,52(Pt 2):107-112.
doi: 10.1042/BA20070245 pmid: 18416696
[28]   Beckwith J, Prinz W A, ?slund F, et al. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli Cytoplasm. Journal of Biological Chemistry, 1997,272(25):15661-15667.
doi: 10.1074/jbc.272.25.15661
[29]   张众, 黄华樑. 大肠杆菌二硫键形成相关蛋白的结构、功能及其在基因工程表达外源蛋白上的应用. 生物工程学报, 2002,18(3):261-266.
[29]   Zhang Z, Huang H L. Escherichia coli disulfide-forming related proteins: structures, functions and their application in gene engineering for expressing heterologous proteins in Escherichia coli. Chinese Journal of Biotechnology, 2002,18(3):261-266.
[30]   华子春, 许立, 孙爱龙, 等. 大肠杆菌二硫键异构酶DsbA和脯氨酸异构酶PPIaseA双顺反子表达载体的构建及其在大肠杆菌中的表达. 南京大学学报(自然科学), 1998(2):251-254.
[30]   Hua Z C, Xu L, Sun A L, et al. Construction of adicistronic expression plasmid expressing E.coli protein disulfide isomerase dsba and E.coli peptidylprolyl-cis,transisomerase ppiasea and its expression in E.coli. Journal of Nanjing University (Natural Sciences), 1998(2):251-254.
[31]   Proba K, Ge L M, Plückthun A. Functional antibody single-chain fragments from the cytoplasm of Escherichia coli: influence of thioredoxin reductase (TrxB). Gene, 1995,159(2):203-207.
doi: 10.1016/0378-1119(95)00018-2 pmid: 7622050
[32]   Bessette P H, Aslund F, Beckwith J, et al. Efficient folding of proteins with multiple disulfide bonds inthe Escherichia coli cytoplasm. Proceedings of the National Academy of Sciences of the United States of America, 1999,96(24):13703-13708.
[33]   Levy R, Weiss R, Chen G, et al. Production of correctly folded fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expression and Purification, 2001,23(2):338-347.
doi: 10.1006/prep.2001.1520 pmid: 11676610
[34]   Berkmen M. Production of disulfide-bonded proteins in Escherichia coli. Protein Expression and Purification, 2012,82(1):240-251.
doi: 10.1016/j.pep.2011.10.009
[35]   Rietsch A, Belin D, Martin N, et al. An in vivo pathway for disulfide bond isomerization in Escherichia coli. PNAS, 1996,93(23):13048-13053.
doi: 10.1073/pnas.93.23.13048 pmid: 8917542
[36]   Missiakas D, Schwager F, Raina S. Identification and characterization of a new disulfide isomerase-like protein (DsbD) in Escherichia coli. The EMBO Journal, 1995,14(14):3415-3424.
pmid: 7628442
[37]   Kurokawa Y, Yanagi H, Yura T. Overexpression of protein disulfide isomerase DsbC stabilizes multiple-disulfide-bonded recombinant protein produced and transported to the periplasm in Escherichia coli. Applied and Environmental Microbiology, 2000,66(9):3960-3965.
doi: 10.1128/aem.66.9.3960-3965.2000 pmid: 10966415
[38]   Kurokawa Y, Yanagi H, Yura T. Overproduction of bacterial protein disulfide isomerase (DsbC) and its modulator (DsbD) markedly enhances periplasmic production of human nerve growth factor in Escherichia coli. The Journal of Biological Chemistry, 2001,276(17):14393-14399.
doi: 10.1074/jbc.M100132200 pmid: 11279016
[39]   禚孝发, 关怡新, 姚善泾. 二硫键异构酶DsbC介导重组瑞替普酶在E.coli中可溶表达. 高校化学工程学报, 2015,29(3):600-606.
[39]   Zhuo X F, Guan Y X, Yao S J. Soluble expression of recombinant reteplase in Escherichia coli by co-expression of disulfide bond isomerase DsbC. Journal of Chemical Engineering of Chinese Universities, 2015,29(3):600-606.
[40]   Zawada J F, Yin G, Steiner A R, et al. Microscale to manufacturing scale-up of cell-free cytokine production-a new approach for shortening protein production development timelines. Biotechnology and Bioengineering, 2011,108(7):1570-1578.
doi: 10.1002/bit.23103
[41]   Lobsiten J, Emrich C A, Jeans C, et al. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microbial Cell Factories, 2012,11:56-71.
doi: 10.1186/1475-2859-11-56 pmid: 22569138
[42]   Tait A R, Straus S K. Overexpression and purification of U24 from human herpesvirus type-6 in E.coli: unconventional use of oxidizing environments with a maltose binding protein-hexahistine dual tag to enhance membrane protein yield. Microbial Cell Factories, 2011,10(1):51-51.
doi: 10.1186/1475-2859-10-51
[43]   Ikura T, Kinoshita K, Ito N. A cavity with an appropriate size is the basis of the PPIase activity. Protein Engineering,Design and Selection, 2008,21(2):83-89.
doi: 10.1093/protein/gzm087 pmid: 18175776
[44]   Compton L A, Davis J M, Macdonald J R, et al. Structural and functional characterization of Escherichia coli peptidyl-prolyl cis-trans isomerase. European Journal of Biochemistry, 1992,206(3):927-934.
doi: 10.1111/j.1432-1033.1992.tb17002.x pmid: 1606970
[45]   余波, 程安春, 汪铭书. 大肠杆菌中重组蛋白可溶性表达的研究进展及展望. 黑龙江畜牧兽医, 2008(10):19-21.
[45]   Yu B, Cheng A C, Wang M S. Research progress and prospect of soluble expression of recombinant protein in Escherichia coli. Heilongjiang Animal Science and Veterinary Medicine, 2008(10):19-21.
[46]   董旭, 辛毅. 重组蛋白在大肠杆菌中可溶性表达的策略. 大连医科大学学报, 2007,29(4):393-395.
[46]   Dong X, Xin Y. Strategies for soluble expression of recombinant protein in Escherichia coli. Journal of Dalian Medical University, 2007,29(4):393-395.
[47]   徐明波, 孟文华, 马贤凯. PDI,PPI和伴侣分子催化重组人IL-2和GM-CSF的再折叠. 中国科学(B辑化学生命科学地学), 1994,24(7):717-723.
[47]   Xu M B, Meng W H, Ma X K. PDI,PPI and chaperone molecules catalyzed the refolding of recombinant human IL-2 and GM-CSF. Science in China,SerB, 1994,24(7):717-723.
[48]   Chen Y, Song J M, Sui S F, et al. DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli. Protein Expression and Purification, 2003,32(2):221-231.
doi: 10.1016/S1046-5928(03)00233-X pmid: 14965767
[49]   Kyratsous C A, Panagiotidis C A. Heat-shock protein fusion vectors for improved expression of soluble recombinant proteins in Escherichia coli. Recombinant Gene Expression, 2012,824:109-129.
[50]   闫啸. 分子伴侣GroEL/GroES介导重组蛋白可溶表达及折叠与组装初步研究. 杭州: 浙江大学, 2012.
[50]   Yan X. Soluble expression of recombinant proteine mediated by chaperonin GroEL/GroES and the folding-assembiy mechanism. Hangzhou: Zhejiang University, 2012.
[51]   江南大学, 山东隆科特酶制剂有限公司.一种分子伴侣共表达提高蔗糖磷酸化酶表达效率的方法:CN201811415908.3. [2019-03-19]. http://d.wanfangdata.com.cn/patent/CN201811415908.3.
[51]   Jiangnan University, Shandong Longke enzyme Preparation Co. LTD. A method for the co-expression of molecular chaperones to improve the expression efficiency of sucrose phosphorylase:CN201811415908.3. [2019-03-19]. http://d.wanfangdata.com.cn/patent/CN201811415908.3.
[52]   Li Y J, Chen Y Y, Bi L J. Fusion tags technology and their applications. Sheng Wu Gong Cheng Xue Bao, 2006,22(4):523-527.
pmid: 16894881
[53]   Costa S, Almeida A, Castro A, et al. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Frontiers in Microbiology, 2014,5:63.
doi: 10.3389/fmicb.2014.00063 pmid: 24600443
[54]   LaVallie E R, DiBlasio E A, Kovacic S, et al. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. colicytoplasm. Bio/ Technology, 1993,11(2):187-193.
[55]   Yang W L. Fusion expression of PLA_2 gene from lapemis hardwickii in E.coli. Acta Microbiologica Sinica, 2002.
pmid: 29756437
[56]   Hammarstr?m M, Hellgren N, van den Berg S , et al. Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Science, 2009,11(2):313-321.
doi: 10.1110/ps.22102 pmid: 11790841
[57]   Song J P, Chen W T, Lu Z S, et al. Soluble expression, purification, and characterization of recombinant human flotillin-2 (reggie-1) in Escherichia coli. Molecular Biology Reports, 2011,38(3):2091-2098.
doi: 10.1007/s11033-010-0335-4
[58]   万爱妮, 徐栋生, 蔡燕飞, 等. 硫氧还蛋白促进人胰岛素样生长因子-1在大肠杆菌中高效可溶表达. 食品与生物技术学报, 2019,38(4):50-57.
[58]   Wan A N, Xu D S, Cai Y F, et al. Thioredoxin increases the efficient and soluble expression of insulin-like growth factor-1 in E.coli. Journal of Food Science and Biotechnology, 2019,38(4):50-57.
[59]   Hartwig S, Frister T, Alemdar S, et al. Expression, purification and activity assay of a patchoulol synthase cDNA variant fused to thioredoxin in Escherichia coli. Protein Expression and Purification, 2014,97:61-71.
[60]   Young C L, Britton Z T, Robinson A S. Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnology Journal, 2012,7(5):620-634.
doi: 10.1002/biot.201100155
[61]   龚伟, 范昌发, 曾瑞红, 等. 含有RSV G蛋白片段和CTL表位融合蛋白的表达及纯化. 军事医学科学院院刊, 2005,29(2):120-123.
[61]   Wei G, Fan C F, Zeng R H, et al. Expression and purification of fusion protein containing segment of glycoprotein G and CTL epitope of protein M2 from RSV. Bulletin of the Academy of Military Medical Sciences, 2005,29(2):120-123.
[62]   孙卫国, 王卫, 李邦印, 等. 风疹病毒E1蛋白与DsbA蛋白原核融合表达及应用. 实用预防医学, 2012,19(10):1445-1447.
[62]   Sun W G, Wang W, Li B Y, et al. Fusion expression of rubella virus E1 protein with DsbA protein in prokaryotic system and its application. Practical Preventive Medicine, 2012,19(10):1445-1447.
[63]   孙卫国. DsbA-DsbAmut融合蛋白作为分子伴侣在原核表达系统中的作用研究. 北京: 中国人民解放军军事医学科学院, 2009.
[63]   Sun W G. Study of DsbA-DsbAmut as molecular chaperone in prokaryotic expression system. Beijing: Academy of Military Medical Sciences, 2009.
[64]   Parker M W, Bello M L, Federici G. Crystallization of glutathione S-transferase from human placenta. Journal of Molecular Biology, 1990,213(2):221-222.
doi: 10.1016/s0022-2836(05)80183-4 pmid: 2342105
[65]   Lim K, Ho J X, Keeling K, et al. Three-Dimensional structure of Schistosoma japonicum glutathione s-transferase fused with a six-amino acid conserved neutralizing epitope of gp41 from hiv. Protein Science, 1994,3(12):2233-2244.
doi: 10.1002/pro.5560031209 pmid: 7538846
[66]   Ji X H, Zhang P H, Armstrong R N, et al. The three-dimensional structure of a glutathione S-transferase from the Mu gene class. Structural analysis of the binary complex of isoenzyme 3-3 and glutathione at 2.2-.ANG. resolution. Biochemistry, 1992,31(42):10169-10184.
doi: 10.1021/bi00157a004 pmid: 1420139
[67]   Maru Y, Afar D E, Witte O N, et al. The dimerization property of glutathione S-transferase partially reactivates bcr-abl lacking the oligomerization domain. Journal of Biological Chemistry, 1996,271(26):15353-15357.
doi: 10.1074/jbc.271.26.15353
[68]   Kaplan W, Hüsler P, Klump H, et al. Conformational stability of pGEX-expressed Schistosoma japonicum glutathione S-transferase: a detoxification enzyme and fusion-protein affinity tag. Protein Science: a Publication of the Protein Society, 1997,6(2):399-406.
doi: 10.1002/pro.5560060216
[69]   Xuan J W, Hota C, Chambers A F. Recombinant GST-human osteopontin fusion protein is functional in RGD-dependent cell adhesion. Journal of Cellular Biochemistry, 1994,54(2):247-255.
doi: 10.1002/jcb.240540213 pmid: 8175899
[70]   Rabhi-Essafi I, Sadok A, Khalaf N, et al. A strategy for high-level expression of soluble and functional human interferon alpha as a GST-fusion protein in E. coli. Protein Engineering,Design & Selection: PEDS, 2007,20(5):201-209.
doi: 10.1093/protein/gzm012 pmid: 17430974
[71]   沈秀张, 林吉进, 武君, 等. GST-FHL2融合蛋白的表达及纯化. 中国分子心脏病学杂志, 2008,8(6):337-340.
[71]   Shen X Z, Lin J J, Wu J, et al. Expression and purification of GST-FHL2 fusion protein. Molecular Cardiology of China, 2008,8(6):337-340.
[72]   Frangioni J V, Neel B G. Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Analytical Biochemistry, 1993,210(1):179-187.
doi: 10.1006/abio.1993.1170 pmid: 8489015
[73]   Huang J, Cao L, Guo W H, et al. Enhanced soluble expression of recombinant Flavobacterium heparinum heparinase I in Escherichia coli by fusing it with various soluble partners. Protein Expression and Purification, 2012,83(2):169-176.
doi: 10.1016/j.pep.2012.03.016 pmid: 22503820
[74]   张磊, 唐永凯, 李红霞, 等. 鲤鱼重组IL-17N的原核表达条件优化及蛋白纯化. 湖南农业大学学报(自然科学版), 2020,46(3):364-369.
[74]   Zhang L, Tang Y K, Li H X, et al. Prokaryotic expression and protein purification of recombinant IL-17N in Cyprinus carpio. Journal of Hunan Agricultural University (Natural Sciences), 2020,46(3):364-369.
[75]   Michalewicz J, Nicholson A W. Molecular cloning and expression of the bacteriophage T7 0.7 Protein kinase) gene. Virology, 1992,186(2):452-462.
[76]   Marchand I, Nicholson A W, Dreyfus M. High-level autoenhanced expression of a single-copy gene in Escherichia coli: overproduction of bacteriophage T7 protein kinase directed by T7 late genetic elements. Gene, 2001,262(1-2):231-238.
[77]   Marchand I, Nicholson A W, Dreyfus M. Bacteriophage T7 protein kinase phosphorylates RNase E and stabilizes mRNAs synthesized by T7 RNA polymerase. Molecular Microbiology, 2008,42(3):767-776.
doi: 10.1046/j.1365-2958.2001.02668.x pmid: 11722741
[78]   Chatterjee D K, Esposito D. Enhanced soluble protein expression using two new fusion tags. Protein Expression and Purification, 2006,46(1):122-129.
[79]   Ohana R F, Encell L P, Zhao K T, et al. HaloTag7: a genetically engineered tag that enhances bacterial expression of soluble proteins and improves protein purification. Protein Expression and Purification, 2009,68(1):110-120.
pmid: 19464373
[80]   崔超, 呼延霆, 尹大川. 重组标签蛋白在蛋白质纯化中的研究进展. 现代生物医学进展, 2014,14(32):6372-6378,6359.
[80]   Cui C, Huyan T, Yin D C. Progress of novel tag protein fusions for the recombinant protein purification. Progress in Modern Biomedicine, 2014,14(32):6372-6378,6359.
[81]   N Peterson S, Kwon K. The HaloTag: improving soluble expression and applications in protein functional analysis. Current Chemical Genomics, 2012,6:8-17.
[82]   Sun C Y, Li Y, Taylor S E, et al. HaloTag is an effective expression and solubilisation fusion partner for a range of fibroblast growth factors. PeerJ, 2015,3:e1060.
[83]   Davis G D, Elisee C, Newham D M, et al. New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnology and Bioengineering, 1999,65(4):382-388.
[84]   Dyson M R, Shadbolt S P, Vincent K J, et al. Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression. BMC Biotechnology, 2004,4:32.
[85]   刘起涛, 朱彦策, 王伟杰, 等. 利用NusA促溶标签原核表达Butelase 1蛋白. 江西农业学报, 2017,29(3):115-119.
[85]   Liu Q T, Zhu Y C, Wang W J, et al. Prokaryotic expression of protein butelase 1 through solubility-enhancing tag NusA. Acta Agriculturae Jiangxi, 2017,29(3):115-119.
[86]   付大伟, 孙莹莹, 徐伟. 融合蛋白NusA-hRI的高效异源表达、纯化及活性分析. 中国生物工程杂志, 2019,39(3):21-28.
[86]   Fu D W, Sun Y Y, Xu W. Efficient heterologous expression, purification and activity analysis of fusion protein nus A-hRI. China Biotechnology, 2019,39(3):21-28.
[87]   Malakhov M P, Mattern M R, Malakhova O A, et al. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. Journal of Structural and Functional Genomics, 2004,5(1-2):75-86.
[88]   姜媛媛, 尹成凯, 李晋南, 等. 利用SUMO融合系统高效表达可溶性重组蛋白的研究. 东北农业大学学报, 2008,39(10):57-62.
[88]   Jiang Y Y, Yin C K, Li J N, et al. Efficient expression of several recombinant proteins by pSUMO expression vector. Journal of Northeast Agricultural University, 2008,39(10):57-62.
[89]   Wang H Y, Xiao Y C, Fu L J, et al. High-level expression and purification of soluble recombinant FGF21 protein by SUMO fusion in Escherichia coli. BMC Biotechnology, 2010,10(1):1-9.
[90]   周晶辉, 赵士敏, 许岗. S-腺苷甲硫氨酸合成酶基因的原核可溶性表达及其转化应用. 中国医药工业杂志, 2020,51(7):849-855.
[90]   Zhou J H, Zhao S M, Xu G. Prokaryotic soluble expression and transformation application of S-adenosylmethionine synthetase gene. Chinese Journal of Pharmaceuticals, 2020,51(7):849-855.
[91]   Costa S J, Almeida A, Castro A, et al. The novel Fh8 and H fusion partners for soluble protein expression in Escherichia coli: a comparison with the traditional gene fusion technology. Applied Microbiology and Biotechnology, 2013,97(15):6779-6791.
[92]   张雪寒, 张碧成, 张强, 等. 肝片吸虫Fh8明显增强STEC的Stx1可溶性表达及Stx1单克隆抗体制备. 华北农学报, 2016,31(5):44-49.
[92]   Zhang X H, Zhang B C, Zhang Q, et al. Fasciola hepatica 8 significantly enhances soluble expression of Stx1 from STEC and Stx1 monoclonal antibody preparation. Acta Agriculturae Boreali-Sinica, 2016,31(5):44-49.
[93]   郭芸芸, 张碧成, 孙小涵, 等. Fh8明显增强PCV2 Cap蛋白的可溶性表达及抗原性. 江苏农业学报, 2018,34(2):356-360.
[93]   Guo Y Y, Zhang B C, Sun X H, et al. Fasciola hepatica 8 significantly enhances soluble expression of Cap from PCV2 and its immunogenicity. Jiangsu Journal of Agricultural Sciences, 2018,34(2):356-360.
[94]   S?rensen H P, Sperling-Petersen H U, Mortensen K K . A favorable solubility partner for the recombinant expression of streptavidin. Protein Expression and Purification, 2003,32(2):252-259.
[95]   黄茜, 黄璐, 潘道东, 等. 植物乳杆菌Lactobacillu plantarum Y1菌株胆盐水解酶基因(bsh)的克隆及重组表达. 南京师大学报(自然科学版), 2010,33(3):91-96.
[95]   Huang Q, Huang L, Pan D D, et al. Molecular cloning and expression of the bile salt hydrolase gene(bsh) from Lactobacillus plantarum Y1. Journal of Nanjing Normal University (Natural Science Edition), 2010,33(3):91-96.
[96]   Yang W C, Welsh J P, Lee J, et al. Solubility partner IF2 Domain I enables high yield synthesis of transducible transcription factors in Escherichia coli. Protein Expression and Purification, 2011,80(1):145-151.
[97]   Zou Z R, Cao L J, Zhou P, et al. Hyper-acidic protein fusion partners improve solubility and assist correct folding of recombinant proteins expressed in Escherichia coli. Journal of Biotechnology, 2008,135(4):333-339.
[98]   Zhang Y B, Howitt J, McCorkle S, et al. Protein aggregation during overexpression limited by peptide extensions with large net negative charge. Protein Expression and Purification, 2004,36(2):207-216.
pmid: 15249042
[99]   Santner A A, Croy C H, Vasanwala F H, et al. Sweeping away protein aggregation with entropic bristles: intrinsically disordered protein fusions enhance soluble expression. Biochemistry, 2012,51(37):7250-7262.
[100]   di Guana C, Lib P, Riggsa P D, et al. Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene, 1988,67(1):21-30.
doi: 10.1016/0378-1119(88)90004-2 pmid: 2843437
[101]   Hewitt S N, Choi R, Kelley A, et al. Expression of proteins in Escherichia coli as fusions with maltose-binding protein to rescue non-expressed targets in a high-throughput protein-expression and purification pipeline. Acta Crystallographica Section F,Structural Biology and Crystallization Communications, 2011,67(Pt 9):1006-1009.
[102]   Yu X L, Sun J Q, Wang W Y, et al. Assessment of the fusion tags on increasing soluble production of the active TEV protease variant and other target proteins in E. coli. Applied Biochemistry and Biotechnology, 2017,182(2):769-781.
pmid: 27988855
[103]   黄昕畑, 张白曦, 陈海琴, 等. 重组融合蛋白MBP-PAI的表达、纯化及酶活测定. 食品与生物技术学报, 2020,39(2):10-15.
[103]   Huang X T, Zhang B X, Chen H Q, et al. Expression, purification and enzyme activity determination of recombination fusion protein MBP-PAI. Journal of Food Science and Biotechnology, 2020,39(2):10-15.
[104]   华侨大学. 一种重组双酶分离纯化及固定化集成的方法:CN201611216551.7. [2016-12-26]. http://cprs.patentstar.com.cn/Search/Detail?ANE=9CID5CDA4CBA7ABA9HED9CHB9DIE9IFFAEHA9FBC9GDF9AIA.
[104]   Huaqiao University. The invention relates to a method for isolation, purification, immobilization and integration of recombinant double enzymes:CN201611216551.7. [2016-12-26]. http://cprs.patentstar.com.cn/Search/Detail?ANE=9CID5CDA4CBA7ABA9HED9CHB9DIE9IFFAEHA9FBC9GDF9AIA.
[105]   王锟, 李日飞, 何伟国, 等. Spycatcher作为一种新的高效促溶标签蛋白的探讨. 解剖科学进展, 2017,23(4):356-359.
[105]   Wang K, Li R F, He W G, et al. Spycatcher as a new high efficient label protein. Progress of Anatomical Sciences, 2017,23(4):356-359.
[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] ZHANG Xiao-hang,LI Yuan-yuan,JIA Min-xuan,GU Qi. Identification and Expression of Elastin-like Polypeptides[J]. China Biotechnology, 2020, 40(8): 33-40.
[3] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[4] LI Tong-tong,SONG Cai-ling,YANG Kai-yue,WANG Wen-jing,CHEN Hui-yu,LIU Ming. Preparation and Neutralization Activity of Anti-Canine Parvovirus VP2 Protein Single-chain Antibody[J]. China Biotechnology, 2020, 40(4): 10-16.
[5] CHEN Qiu-li,YANG Li-chao,LI Hui,WEN Sha,LI Gang,HE Min. Prokaryotic Expression,Purification and Preparation of Polyclonal Antibody of Human Nek2 Protein[J]. China Biotechnology, 2020, 40(3): 31-37.
[6] Long-bing YANG,Guo GUO,Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG. Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica[J]. China Biotechnology, 2019, 39(4): 24-31.
[7] Ming-ying LI,Ren-jun WANG,Fun ZHANG,Yan CHI. The Prokaryotic Expression and Activity Analysis of the Fifth Domain of β2GPⅠ and Its Mutants or Short Peptide Fragments[J]. China Biotechnology, 2018, 38(8): 1-9.
[8] Xiao-lu GUO,Xiu-fang GONG,Jia-feng CHEN,Chen-xi DING,Dan HU,Xiu-zhen PAN,Chang-jun WANG. Gene Cloning, Expression and Identification of Phosphoglyceric Kinase of Streptococcus suis Serotype 2[J]. China Biotechnology, 2018, 38(3): 16-23.
[9] Yuan-qiao CHEN,Ding-pei LONG,Xiao-xue DOU,Run QI,Ai-chun ZHAO. Studies on the Protein Purification Ability of an ELP30-Tag in Prokaryotic Expression System[J]. China Biotechnology, 2018, 38(2): 54-60.
[10] HE Ya-nan,SUN Yu-liang,REN Ya-kun,LIANG Sheng-ying,YANG Fen,LIU Yan-li,LIN Jun-tang. The Construction and Functional Analysis of Staphylococcal Enterotoxin-like K and GFP Fusion Protein[J]. China Biotechnology, 2018, 38(12): 14-20.
[11] Jian-wei REN,Jun LI,Shang-ze LI. Human CT55 Protein Prokaryotic Expression and Its Production of Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 1-8.
[12] FENG Xue, GAO Xiang, NIU Chun-qing, LIU Yan. Construction of Pichia pastoris Expression Vector of Codon Optimized αB-crystallin Gene and Expression Optimization[J]. China Biotechnology, 2017, 37(7): 42-47.
[13] LIU Yan-juan, LI Xu-juan, YUAN Hang, LIU Xian, GAO Yan-xiu, GONG Ming, ZOU Zhu-rong. Fusing the Acyl Carrier Protein Enhances the Solubility and Thermostability of the Recombinant Proteins in Escherichia coli[J]. China Biotechnology, 2017, 37(7): 115-123.
[14] SUN Wen-jia, YAO Yu-feng, YANG Xu, HUANG Wei-wei, LIU Cun-bao, LONG Qiong, CHU Xiao-jie, MA Yan-bing. Presentation of HPV 16L1 Peptide-based HBcAg Virus-like Particle and Induction of Specific Antibody[J]. China Biotechnology, 2017, 37(3): 58-64.
[15] TUERXUN Zulipiye, CAO Chun-bao, WEN Hao, DING Jian-bing, YIMITI Delixiati. Analysis of Gene Evolution, Protein Expression and Identification of Echinococcus granulosus EgG1Y162[J]. China Biotechnology, 2016, 36(4): 78-87.