Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (5): 30-39    DOI: 10.13523/j.cb.2001008
    
Effects of Glucose and Maltose Substrates on the Intracellular Metabolic Flux Distribution of Curdlan Polysaccharides Biosynthesis by Alcaligenes faecalis
WANG Ze-jian1,LI Bo2,WANG Ping1,ZHANG Qin1,HANG Hai-feng1,LIANG Jian-guang2,ZHUANG Ying-ping1,**()
1 State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Institute of Biomanufacturing Technology & Collaborative Innovation Center, Shanghai 200237, China
2 College of Pharmaceutical Science,Soochow University, Suzhou 215123, China
Download: HTML   PDF(971KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Maltose and glucose have significant effects on the production of curdlan by fermentation of Alcaligenes faecalis. The chemostat culture and steady-state carbon balanced metabolic flux analysis were applied to evaluate the effect of the substrates on curdlan biosynthesis in detail. Results demonstrated that the intracellular metabolism of A. faecalis were significantly different under the substrates of maltose and glucose as the carbon substrate at the dilution rate of 0.1h -1. The relative metabolic flux analysis showed the curdlan yield reached 53.8% under maltose source, which was more than 45.8% higher than that of glucose (36.9%). At the same time, the absolute metabolic flux of the HMP pathway increased more than 40% than that of glucose, and enhanced the supply rate of NADPH. The higher NADPH supply level promotes the flux ratio of curdlan biosynthesis, which depends on NADPH cofactors, and increases the molar conversion rate of curdlan from carbon source substrate. Moreover, the metabolic flux distribution results also showed that the ED pathway distribution and energy supply are also the key factors affecting the curdlan biosynthesis efficiency of A. faecalis. The lower residual glucose concentration with maltose as carbon source substrate could relieve the inhibition on curdlan synthesis, and could achieve higher flux ratio of ATP supply for promoting the curdlan biosynthesis efficiency.



Key wordsCurdlan      Metabolic flux analysis      Alcaligenes faecalis      Chemostat culture     
Received: 02 January 2019      Published: 02 June 2020
ZTFLH:  Q815  
Corresponding Authors: Ying-ping ZHUANG     E-mail: ypzhuang@ecust.edu.cn
Cite this article:

WANG Ze-jian,LI Bo,WANG Ping,ZHANG Qin,HANG Hai-feng,LIANG Jian-guang,ZHUANG Ying-ping. Effects of Glucose and Maltose Substrates on the Intracellular Metabolic Flux Distribution of Curdlan Polysaccharides Biosynthesis by Alcaligenes faecalis. China Biotechnology, 2020, 40(5): 30-39.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2001008     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I5/30

比速率 反应式
r1 Glc + ATP →G-6-P+ADP
r2 G-6-P ? F-6-P
r3 ATP + F-6-P → ADP + 2GAP
r4 GAP + ADP + NAD ? ATP + NADH + G-3-P + H+
r5 G-3-P ? PEP + H2O
r6 ADP + PEP → ATP + PYR
r7 PYR + NAD + COA → Ac-COA + CO2 + NADH
r8 OAA + Ac-COA + NAD →CO2+ NADH + α-KG +COA
r9 α-KG + ADP + FAD + 2NAD → ATP + CO2 + FADH2 + 2 NADH + OAA
r10 NADPH + α-KG + NH4+→NADP + Glut + H2O
r11 Glut + ATP + NH4+ → ADP + Glum
r12 G-6-P + NADP → 6-P-G + NADPH
r13 6-P-G + NADP → Ru-5-P + NADPH
r14 3P5P → 2 F6P + G3P
r15 Ru-5-P → Xu-5-P
r16 Ri-5-P + Xu-5-P →E-4-P + F-6-P
r17 F-6-P + GAP ? Ri-5-P + E-4-P
r18 6-P-G → GAP + PYR
r19 2 ADP + NADH + 0.5 O2 → 2 ATP + NAD + H2O
r20 ATP → ADP
r21 FADH2+ ADP → ATP + H2O + FAD
r22
0.374 Ac-COA + 4.11 ATP + 0.036 E-4-P + 0.007 F-6-P + 0.15 G-3-P + 0.021 G-6-P+0.013 GAP+0.025 Glum + 0.832 Glut + 0.179 OAA + 0.052 PEP + 0.283 PYR + 0.09 Ri-5-P + 0.826 NADPH+ 0.312 NAD → 4.11 ADP + 0.261 CO2 + 0.751 α-KG + BIOMASS + 0.826 NADP + 0.312NADH
r23 G-6-P + UTP → [C6H10O5] + UDP
r24 UDP + ATP →UTP + ADP
Table 1 A. faecalis metabolic network reaction
序号 节点 平衡方程
1 Glc -r1=V底物消耗速率
2 G-6-P G: r1-r2-r12-0.0021r24-r21=0
M: 2r1-r2-r12-0.021r24-r21=0
3 F-6-P r2-r3+r14+r15-0.007r24=0
4 GAP 2r3-r4+r15+r17-0.013r24=0
5 G-3-P r4-r5-0.15r24=0
6 PEP r5-r6-0.052r24=0
7 PYR r6-r7+r17-r18-0.032r24=V丙酮酸生成速率
8 Ac-COA r7-r8-0.074r24=0
9 OAA -r8+r9+r18-0.192r24=VOAA生成速率
10 α-KG r8-r9-r10+0.082r24=0
11 Glut r10-r11-0.145r24=0
12 Glum r11-0.025r24=0
13 6-P-G r12-r13-r16=0
14 R-5-P r13-2r14-r15-0.011r24=0
15 E-4-P r14-r15-0.036r24=0
17 KDPG r16-r17=0
18 NADPH -r10+r12+r13-r19-0.826r24=0
19 NADH r4+r7+r8+2r9-r21+0.312r24=0
20 ATP G: -r1-r3+r4+r6+r9-r11+2r19-r20-4.11r24-r22=0
M: -2r1-r3+r4+r6+r9-r11+2r19-r20-4.11r24-r22=0
21 UTP -r22+r21=0
22 UDPG r22-r23=0
23 Curdlan r23=Vcurdlan生成速率
24 Biomass r24=μ菌体比增长速率
25 CO2 r7+r8+r9-r16+r22=0
Table 2 A. faecalis metabolic network equation
Fig.1 The profiles of carbon dioxide emission rate (a), biomass (b), curdlan production (c), sugar consumption (d) during the chemostat cultures of A. faecalis under glucose and maltose as the substrate at the dilution rate of 0.1h-1
碳源 葡萄糖
(g/L)
麦芽糖
(g/L)
PYR
(g/L)
OAA
(g/L)
O2
[mmol/(L·h)]
CO2
[mmol/(L·h)]
生物量
(g/L)
凝胶多糖
(g/L)
葡萄糖 16.52 - 0.30 - 24.65 25.86 5.37 7.81
麦芽糖 0.81 8.79 - 0.61 25.34 27.06 5.48 15.90
Table 3 Comparison of substrate and product concentration of glucose and maltose fermentation
碳源底物 葡萄糖 麦芽糖
比葡萄糖消耗速率qs[mmol/(gDCW·h)] 2.42 -
比麦芽糖消耗速率qs[mmol/(gDCW·h)] - 1.67
比PYR合成速率[mmol/(gDCW·h)] 0.063 -
比OAA合成速率[mmol/(gDCW·h)] - 0.084
比CO2生成速率[mmol/(gDCW·h)] 4.81 4.94
比菌体生长速率[mmol/(gDCW·h)] 1.06 1.08
比凝胶多糖合成速率qp[mmol/(gDCW·h)] 0.89 1.79
碳回收率(%) 100.03 100.25
Table 4 Comparison of substrate and product specific rates of glucose and maltose fermentation
Fig.2 Relative metabolic flux distribution on curdlan production of A. faecalis at dilution rate of 0.1 based on glucose and maltose fermentation at a dilution rate of D=0.1
Fig.3 Absolute relative metabolic flux distribution on curdlan production of A. faecalis at dilution rate of 0.1h-1 based on glucose and maltose fermentation
[1]   Rinaudo M . Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 2008,57(3):397-430.
[2]   Mckellar R C, Van Geest J, Cui W . Influence of culture and environmental conditions on the composition of exopolysaccharide produced by Agrobacterium radiobacter. Food Hydrocolloids, 2003,17(4):429-437.
[3]   Sutherland I W . Novel and established applications of microbial polysaccharides. Trends in Biotechnology, 1998,16(1):41-46.
[4]   Shih I L, Yu J Y, Hsieh C , et al. Production and characterization of curdlan by Agrobacterium sp. Biochemical Engineering Journal, 2009,43(1):33-40.
[5]   Ding Z, Jia S, Han P , et al. Effects of carbon sources on growth and extracellular polysaccharide production of Nostoc flagelliforme under heterotrophic high-cell-density fed-batch cultures. Journal of Applied Phycology, 2013,25(4):1017-1021.
[6]   Jin L H, Um H J, Yin C J , et al. Proteomic analysis of curdlan-producing Agrobacterium sp. in response to pH downshift. Journal of Biotechnology, 2008,138(3-4):80-87.
[7]   Yu L J, Wu J R, Zheng Z Y , et al. Changes of curdlan biosynthesis and nitrogenous compounds utilization characterized in ntrc mutant of Agrobacterium sp. Atcc 31749. Current Microbiology, 2011,63(1):60-67.
[8]   Yu L J, Wu J R, Zheng Z Y , et al. Changes in gene transcription and protein expression involved in the response of Agrobacterium sp. Atcc 31749 to nitrogen availability during curdlan production. Applied Biochemistry and Microbiology, 2011,47(5):487-493.
[9]   Wu D, Li A, Ma F , et al. Genetic control and regulatory mechanisms of succinoglycan and curdlan biosynthesis in genus Agrobacterium. Applied Microbiology and Biotechnology, 2016,100(14):6183-6192.
doi: 10.1007/s00253-016-7650-1
[10]   Zhang Q, Sun J Y, Wang Z J , et al. Kinetic analysis of curdlan production by Alcaligenes faecalis with maltose, sucrose, glucose and fructose as carbon sources. Bioresource Technology, 2018,259(13):319-324.
[11]   王泽建, 张琴, 王萍 , 等. 恒化培养条件下粪产碱杆菌凝胶多糖的发酵动力学研究. 食品工业科技, 2019,40(11):139-146.
[11]   Wang Z J, Zhang Q, Wang P , et al. Study on curdlan fermentation kinetics of Alcaligenes faecalis under chemostat cultivation. Science and Technology of Food Industry, 2019,40(11):139-146.
[12]   Zheng Z Y, Lee J W, Zhan X B , et al. Effect of metabolic structures and energy requirements on curdlan production by Alcaligenes faecalis. Biotechnology and Bioprocess Engineering, 2007,12(4):359-365.
doi: 10.1007/BF02931057
[13]   Shi H, Shiraishi M, Shimizu K . Metabolic flux analysis for biosynthesis of poly(β-hydroxybutyric acid) in Alcaligenes eutrophus from various carbon sources. Journal of Fermentation & Bioengineering, 1997,84(6):579-587.
[14]   Kim M K, Ryu K E, Choi WA , et al. Enhanced production of (1,3)-β-d-glucan by a mutant strain of Agrobacterium species. Biochemical Engineering Journal, 2003,16(2):163-168.
[15]   Hongtao Z, Joao Carlos S, Xiaobei Z , et al. Component identification of electron transport chains in curdlan-producing Agrobacterium sp. Atcc 31749 and its genome-specific prediction using comparative genome and phylogenetic trees analysis. Journal of Industrial Microbiology & Biotechnology, 2011,38(6):667-677.
[16]   Welman A D, Maddox I S . Fermentation performance of an exopolysaccharide-producing strain of Lactobacillus delbrueckii subsp. bulgaricus. Journal of Industrial Microbiology and Biotechnology, 2003,30(11):661-668.
[17]   Stephanopoulos G, Aristidou A, Nielsen J . Metabolic engineering: principles and methods. Elsevier: Academic Press, 2003: 433-501.
[18]   Zhang H T, Zhu L, Liu D , et al. Model-based estimation of optimal dissolved oxygen profile in Agrobacterium sp. Fed-batch fermentation for improvement of curdlan production under nitrogen-limited condition. Biochemical Engineering Journal, 2015,103(11):12-21.
[19]   Duan X, Chi Z, Wang L , et al. Influence of different sugars on pullulan production and activities of alpha-phospho glucose mutase, udpg-pyrophosphorylase and glucosyl transferase involved in pullulan synthesis in Aureobasidium pullulans y68. Carbohydr Polym, 2008,73(4):587-593.
[20]   Martin S A, Russell J B . Transport and phosphorylation of disaccharides by the ruminal bacterium Streptococcus bovis. Applied and Environmental Microbiology, 1987,53(10):2388-2393.
doi: 10.1128/AEM.53.10.2388-2393.1987
[21]   Velasco S E, Yebra M J, Monedero V , et al. Influence of the carbohydrate source on beta-glucan production and enzyme activities involved in sugar metabolism in Pediococcus parvulus 2.6. International Journal of Food Microbiology, 2007,115(3):325-334.
[1] SHI Hui-lin, WANG Ze-jian, WU Jie-qun, GUO Mei-jin, CHU Ju, ZHUANG Ying-ping. Expression of Vitreosicilla Hemoglobin Gene(vgb) In Pseudomonas denitrificans and the Central Carbon Metabolic Flux Analysis on Vitamin B12 Production[J]. China Biotechnology, 2016, 36(9): 21-30.
[2] YUAN Pei-pei, CAO Wei-jia, WANG Zhen, ZHANG Bo-wen, CHEN Ke-quan, LI Yan, OUYANG Ping-kai. Regulation on L-phenylalanine Fermentation by Escherichia coli and Its Metabolic Flux Analysis[J]. China Biotechnology, 2015, 35(3): 25-34.
[3] LI Xiao-jing, DUAN Yun-xia. Application of Metabolic Engineering in Riboflavin Production[J]. China Biotechnology, 2011, 31(02): 130-138.
[4] . Screening and Metabolic Flux Analysis of Glutathione-high-yielding strain from Saccharomyces cerevisiae[J]. China Biotechnology, 2008, 28(7): 110-115.
[5] . Analysis of carbon metabolic effluence on ethanol fermentation by Pichia stipitis[J]. China Biotechnology, 2007, 27(10): 64-69.