Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (3): 65-71    DOI: 10.13523/j.cb.1907055
Orginal Article     
Cloning and Characterization of Acetylesterase AesA Derived from Mannan Utilization Gene Cluster of Bacillus sp. N16-5
MA Cui-ping,LIU Duo-duo,PAN Bing-ju,SHEN Hui-tao,SONG Ya-jian()
Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Lab of Industrial Microbiology,College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
Download: HTML   PDF(687KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The residues of natural polysaccharide substrates were often substituted by acetyl groups, and acetyl esterase can cut acetyl groups on these substrates, which is conducive to the further degradation. The gene aesA which encoding an acetyl esterase was cloned from mannan utilization gene cluster of Bacillus sp. N16-5 and heterologously expressed in prokaryotic host. The gene aesA is 957bp long and encodes 318 amino acids, belonging to the carbohydrate esterase family 7 (CE7). AesA showed good catalytic activity for 4-methylumbelliferyl-acetate and pNP-acetate, however, there was no active effect on alpha-naphthyl acetate. The enzyme activity for 4-methylumbelliferyl-acetate is 1.68U/mg, and the kinetic parameters Km, Vmax and kcat/Km, were measured by 3.27mmol/L, 0.044mmol/min and 289.71ms-1, respectively. Metal ions Fe3+, Fe2+, Mn2+ and Cu2+ all promoted the activity of AesA, and Cu2+ exhibited the most significant promoting effect. AesA has a significant synergistic effect with β-mannanase ManA on degrading acetylated mannan substrates, and the synergy degree reached 1.47 when using acetylated locust bean gum as substrate. It is helpful to understand the mannan utilization mechanism of Bacillus sp. N16-5, and has potential application prospects in mannan degradation.



Key wordsBacillus sp. N16-5      Acetylesterase      Enzymological properties      Mannan     
Received: 01 August 2019      Published: 18 April 2020
ZTFLH:  Q946.5  
Corresponding Authors: Ya-jian SONG     E-mail: songyajian@tust.edu.cn
Cite this article:

MA Cui-ping,LIU Duo-duo,PAN Bing-ju,SHEN Hui-tao,SONG Ya-jian. Cloning and Characterization of Acetylesterase AesA Derived from Mannan Utilization Gene Cluster of Bacillus sp. N16-5. China Biotechnology, 2020, 40(3): 65-71.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1907055     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I3/65

引物名称序列克隆基因
aesA -f5'-CCGCTCGAGTTATGAACGTAAATATTGCATGATTATATCG-3'aesA
aesA -r5'-CGCCATATGGTGCCGACAATTGACTTACCT-3'
Table 1 Primers used in this work
Fig.1 The phylogenetic tree analysis of AesA
Fig.2 SDS-PAGE detection of protein purified by His trap TM HP column(a) Amplified aesA electrophoresis maps (b) Plasmid pET28a-aesA double enzyme electrophoresis (c) Detection of recombinant plasmid expression by SDS-PAGE Lane1: The broken supernatant of BL21 pET28a recombinant strain; Lane2: The broken supernatant of pET28a-aesA recombinant strain (d) SDS-PAGE detection of protein purified by His Trap TM HP column
底物Vmax (mmol /min)kcat (s-1)Km (mmol/L)kcat/Km(ms-1)比酶活 (U/mg)
乙酸-α-萘酯NNNNN
乙酸对硝基苯酯0.0360.773.36228.881.53
4-甲基伞形酮乙酸酯0.0440.953.27289.711.68
Table 2 The substrate specificity and kinetics analysis of AesA
Fig.3 Optimum temperature (a) and pH (b) of recombinant AesA
金属离子及化学试剂相对活性(%)
对照100.0
Li+73.7 ± 0.9
Fe3+139.6 ± 1.4
Fe2+134.6 ± 1.5
Zn2+67.2 ± 1.3
Mn2+116.3 ± 0.9
Ni2+73.7± 1.4
K+98.5± 1.1
Cu2+140.9 ±0.9
Mg2+74.1 ±0.5
Ca2+71.2 ± 0.6
乙醇66.1 ±0.7
SDS89.8± 1.5
EDTA-Na293.6 ± 0.5
β-巯基乙醇51.2 ± 0.8
Table 3 Effect of metal ions and chemical reagents on the activities of purified AesA
乙酰化魔芋甘露聚糖乙酰化刺槐豆胶
还原糖生成量
(mmol)
协同率显著性还原糖生成量
(mmol)
协同率显著性
ManA0.41±00.34±0.02
AesA0.04±0.010.03±0
AesA和ManA0.67±0.031.47±0.05**0.5±0.021.34±0.12*
Table 4 Synergy degree between AesA and ManA
[1]   Topakas E,Paul C. Microbial xylanolytic carbohydrate esterases. Springer Netherlands: Industrial Enzymes, 2007: 20-21.
[2]   Hu X,Zhang P,Miao M,et al.Development of a recombinant d-mannose isomerase and its characterizations for d-mannose synthesis. International Journal of Biological Macromolecules,2016,89(8): 328-335.
[3]   Koutaniemi S,van Gool M P,Juvonen M,et al. Distinct roles of carbohydrate esterase family CE16 acetyl esterases and polymer-acting acetyl xylan esterases in xylan deacetylation. Journal of Biotechnology,2013,168(4): 684-692.
[4]   吴红丽,薛勇,刘健,等. 乙酰木聚糖酯酶研究进展. 中国生物工程杂志, 2016,36(3):102-110.
[4]   Wu H L,Xue Y,Liu J,et al.Research progress of acetylxylanesterase. China Biotechnology, 2016,36(3):102-110.
[5]   Saumya S,Gursharan S,Kumar A S.Mannans: An overview of properties and application in food products. International Journal of Biological Macromolecules, 2018,119(11):79-95.
[6]   张云程,张艳,张洋,等. 甘露消毒丹的临床运用. 陕西中医,2002,23(2): 33-33.
[6]   Zhang Y C,Zhang Y,Zhang Y,et al.Clinical application of manna disinfectant. Shanxi Traditional Chinese Medicine,2002,23(2): 33-33.
[7]   Tenkanen M,Thornton J,Viikari L.An acetylglucomannan esterase of Aspergillus oryzae;purification,characterization and role in the hydrolysis of O -acetyl-galactoglucomannan. Journal of Biotechnology,1995,42(3): 197-206.
[8]   Ma Y H,Xue Y F,Dou Y,et al.Characterization and gene cloning of a novel β-mannanase from alkaliphilic Bacillus sp. N16-5. Extremophiles,2004,8(6): 447-454.
[9]   Song Y J,Xue Y F,Ma Y H.Global microarray analysis of carbohydrate use in alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5. PLoS One,2013, 8(1): e54090.
[10]   Mai-Gisondi G, Master E R.Colorimetric detection of acetyl xylan esterase activities. Methods in Molecular Biology,2017, 1588(4):45-57.
[11]   Gao S, Nishinari K.Effect of degree of acetylation on gelation of konjac glucomannan. Biomacromolecules,2004,5(5): 175-185.
[12]   光善仪,宫晓梅,高晓燕,等. 乙酸酐对魔芋葡甘聚糖的改性. 精细化工, 2004,21(7): 529-531.
[12]   Guang S Y,Gong X M,Gao X Y,et al.Modification of konjac glucomannan by acetic anhydride. Fine Chemical Engineering,2004,21(7): 529-531.
[13]   Levisson M, Han G W, Deller M C,et al.Functional and structural characterization of a thermostable acetyl esterase from Thermotoga maritima. Proteins-structure Function & Bioinformatics,2012,80(6): 1545-1559.
[14]   Lorenz W W, Wiegel J.Isolation,analysis,and expression of two genes from Thermoanaerobacterium sp. strain JW/SL YS485: a beta-xylosidase and a novel acetyl xylan esterase with cephalosporin C deacetylase activity. Journal of Bacteriology,1997, 179(17): 5436.
[15]   Florence V, Charnock S J, Verschueren K H G,et al. Multifunctional xylooligosaccharide/cephalosporin C deacetylase revealed by the hexameric structure of the Bacillus subtilis enzyme at 1.9A resolution. Journal of Molecular Biology,2003,330(3): 593-606.
[16]   王瑶,王睿琪,那金,等. 甘露聚糖酶协同水解甘露聚糖研究进展. 中国农学通报,2017,33(21): 21-26.
[16]   Wang Y, Wang R Q, Na J,et al.Research progress of manganase synergistic hydrolysis of mannose. Chinese Agricultural Science Bulletin,2017,33(21): 21-26.
[1] PAN Bing-jv,ZHANG Wan-yi,SHEN Hui-tao,LIU Ting-ting,LI Zhong-yuan,LUO Xue-gang,SONG Ya-jian. Research Progress on Separation and Purification of Mannan Oligosaccharide[J]. China Biotechnology, 2020, 40(11): 90-95.
[2] Yin YAO,Qi MIN,Hai-rong XIONG,Li ZHANG. Co-expression of xylanase and mannanase in Pichia pastoris and the enzymatic analyses[J]. China Biotechnology, 2019, 39(3): 37-45.
[3] YANG Qing, WANG Bin, WANG Ya-wei, ZHANG Hua-shan, XIONG Hai-rong, ZHANG Li. Comparison of Signal Peptides for Two Hemicellulase Secretory Expression[J]. China Biotechnology, 2017, 37(8): 15-22.
[4] LI Xue-qing, YUAN Feng-jiau, CHENG Jian-qing, DONG Yun-hai, LI Jian-fang, WU Min-chen. Effect of Amino Acid H321 on the Enzymatic Properties of Hybrid β-Mannanase AuMan5Aloop[J]. China Biotechnology, 2017, 37(2): 48-53.
[5] ZHANG Wei, WANG Ya-wei, CHEN Feng, ZHOU Ying, XIONG Hai-rong. Gene Synthesis, Expression and Characterization of a Thermostable Endo-β-1, 4-mannanase[J]. China Biotechnology, 2014, 34(8): 41-46.
[6] KANG Ji-yao, ZHANG Ning, ZHOU Wei-qing, SUN Li-jing, ZHANG Gui-feng, MA Guang-hui, SU Zhi-guo. Preparation and Method of Microcarrier Based on Konjac Glucomannan Microsphere[J]. China Biotechnology, 2013, 33(5): 44-49.
[7] WU Xiu-xiu, LV Xiao-hui, HU Ya-dong, XIE Chun-fang, LIU Da-ling, YAO Dong-sheng. Directed Evolution in vitro of Armillariella tabescens MAN47 β-Mannanase with Higher Thermalstability and Acid Tolerance[J]. China Biotechnology, 2012, 32(03): 83-90.
[8] HU Feng-juan, WANG Xu-man, LIU Da-ling, YAO Dong-sheng. Directional Molecular Rebuilding of β-mannanase MAN47 with Trypsin-resistance from Armillariella tabescens[J]. China Biotechnology, 2011, 31(10): 75-82.
[9] XU Shu-jing, ZHANG Yue-ling, ZHANG Yan, ZHAO Bao-hua, JU Jian-song, MA Yan-he. Simultaneous Introduction of Double-site Mutations by Improved SOE-PCR[J]. China Biotechnology, 2010, 30(10): 49-54.
[10] . Simultaneous Introduction of Double-Site Mutations by Improved SOE-PCR[J]. China Biotechnology, 2010, 30(10): 0-0.
[11] . SECRETED EXPRESSION OF MANNANASE GENE IN PICHIA PASTORIS AND ANYLYSIS OF ENZYMIC PROPERTIES[J]. China Biotechnology, 2006, 26(07): 52-56.