Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (12): 56-63    DOI: 10.13523/j.cb.20191208
    
Research Progress of Non-coding RNA in Autophagy
SHEN Bing-lei(),WANG Yu-xuan,HAN Shuo,LI Xi,YANG Zhuo-ni-na,ZOU Zi-wen,LIU Juan
College of Animal Science,Heilongjiang Bayi Agricultural University, Daqing 163319, China
Download: HTML   PDF(825KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Autophagy is a process in which cells degrade intracellular damaged components under stress conditions and involves the involvement of multiple signaling molecules.In the process of disease occurrence and development, autophagy can inhibit or delay the development of the disease, and can also make the disease worse. Therefore, it is of great significance to find the factors that regulate the autophagy at different stages to explore its effective target.Noncoding RNA (ncRNA) is a generic term for a class of RNA that is transcribed from the genome and does not travel to encode proteins. Over the years, more and more different ncRNAs have been discovered and play an important regulatory role in the physiological and pathological processes of animals.Studies have shown that ncRNA plays an important regulatory role in the process of autophagy.This article intends to review the regulation of ncRNA in the autophagy pathway from microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and to treat diseases such as cancer and Molecular markers provide theoretical guidance and new ideas.



Key wordsAutophagy      ncRNA      microRNA      lncRNA      circRNA     
Received: 16 April 2019      Published: 15 January 2020
ZTFLH:  Q78  
Corresponding Authors: Bing-lei SHEN     E-mail: binglei514@163.com
Cite this article:

SHEN Bing-lei,WANG Yu-xuan,HAN Shuo,LI Xi,YANG Zhuo-ni-na,ZOU Zi-wen,LIU Juan. Research Progress of Non-coding RNA in Autophagy. China Biotechnology, 2019, 39(12): 56-63.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191208     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I12/56

Fig.1 Schematic representation of the autophagy pathway and some core autophagy proteins
MiRNA名称 靶基因 疾病类型 功能 参考文献
miR-17-5p ULK1 巨噬细胞BCG感染 抑制自噬 Duan等[34]
miR-137 ATG7 胶质母细胞瘤 抑制自噬 Zeng等[35]
miR-199a-5p ATG7 肝癌 抑制自噬 Xu等[36]
miR-199a-5p Rheb 强直性脊柱炎 增强自噬 Wang等[37]
miR-33 ABCA1 动脉硬化 恢复自噬 Ouimet等[38]
miR-138-5p SIRT1 胰腺癌 抑制自噬 Tian等[39]
miR -505-3p ATG12 轴突细胞发育 抑制自噬 Yang等[40]
miR-152 ATG14 卵巢癌 抑制自噬 He等[41]
miR -30a Beclin1 肝纤维化 抑制自噬 Chen等[42]
miR -30a Beclin1;ATG5 肝癌 抑制自噬 Fu等[43]
miR-34a HMGB1 急性髓系白血病 促进凋亡;抑制自噬 Liu等[44]
miR-23a ATG12 黑色素瘤 促进自噬 Guo等[45]
miR-26a DUSP4;DUSP5 急性肝损伤。 促进自噬 Han等[46]
miR-223 ATG16L1 中枢神经系统炎症 抑制自噬 Li等[47]
miR -24-1-5p UBD 黑色素瘤 促进凋亡;促进自噬 Xiao等[48]
miR-20a;miR-20b RB1CC1;FIP200 乳腺癌 抑制自噬 Li等[49]
miR -205 TP53INP1 列腺癌 抑制自噬 Wang等[50]
Table 1 Important miRNAs in the regulation of autophagy
Fig.2 Classification of lncRNA[51]
lncRNA名称 互作基因 疾病类型 功能 参考文献
LncRNA CA7-4 miR-877-3P;miR-5680 血管内皮细胞(高糖) 促进自噬 Zhao等[63]
LncRNA GAS8-AS1 ATG5 乳头状甲状腺癌 抑制自噬 Qin等[64]
LncRNA Meg3 ATG3 上皮性卵巢癌 诱导自噬 Xiu等[65]
LncRNA NBAT1 ATG7 非小细胞肺癌 抑制自噬 Zheng等[66]
LncRNA AC023115.3 miR-26a 胶质母细胞瘤 减少自噬 Ma等[67]
LncRNA HOTAIR ATG3;ATG7 肝癌 激活自噬 Yang等[68]
LncRNA TGFB2-OT1 miR3960;miR4488;miR4459 血管内皮细胞 调控自噬 Huang等[69]
LncRNA MALAT-1 HMGB1 多发性骨髓瘤 促进自噬 Gao等[70]
LncRNA loc146880 LC3B 肺癌 诱导自噬 Deng等[71]
Table 2 lncRNA involved in autophagy regulation
[1]   Thorburn A . Autophagy and disease. J Biol Chem, 2018,293(15):5425-5430.
[2]   Sahu R, Kaushik S, Clement C C , et al. Microautophagy of cytosolic proteins by late endosomes. Dev Cell, 2011,20(1):131-139.
[3]   He C, Klionsky D J . Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet, 2009,43:67-93.
[4]   Arias E, Cuervo A M . Chaperone-mediated autophagy in protein quality control. Curr Opin Cell Biol, 2011,23(2):184-189.
[5]   Cuervo A M, Dice J F, Knecht E . A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins. J Biol Chem, 1997,272(9):5606-5615.
[6]   Martinez-Lopez N, Athonvarangkul D, Singh R . Autophagy and aging. Adv Exp Med Biol, 2015,847:73-87.
[7]   Levy J M M, Towers C G, Thorburn A . Targeting autophagy in cancer. Nat Rev Cancer, 2017,17(9):528-542.
[8]   Bartel D . P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004,116:281-297.
[9]   Shen B, Han S, Wang Y , et al. Bta-miR-152 affects intracellular triglyceride content by targeting the UCP3 gene. J Anim Physiol Anim Nutr, 2019,103:1365-1373.
[10]   Oom A L, Humphries B A, Yang C . MicroRNAs: novel players in cancer diagnosis and therapies. BioMed research international, 2014,2014:959461.
[11]   Chen X, Ba Y, Ma L , et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell research, 2008,18:997-1006.
[12]   Bhan A, Mandal S S . LncRNA HOTAIR: a master regulator of chromatin dynamics and cancer. Biochim Biophys Acta, 2015,1856:151-164.
[13]   Blythe A J, Fox A H, Bond C S . The ins and outs of lncRNA structure: how, why and what comes next? Biochim Biophys Acta, 2016,1859:46-58.
[14]   Quinn J J, Chang H Y . Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet, 2016,17:47-62.
[15]   Yang L, Wang H, Shen Q , et al. Long non-coding RNAs involved in autophagy regulation. Cell Death Dis, 2017,8(10):3073.
[16]   Li Z, Huang C, Bao C , et al. Exon-intron circular rnas regulate transcription in the nucleus. Nature Structural & Molecular Biology, 2015,22:256-264.
[17]   Zhang X O, Wang H B, Zhang Y , et al. Complementary sequence-mediated exon circularization. Cell, 2014,159:134-147.
[18]   Caiment F, Gaj S, Claessen S , et al. High-throughput data integration of rna-mirna-circrna reveals novel insights into mechanisms of benzo[a]pyrene-induced carcinogenicity. Nucleic Acids Research, 2015,43:2525-2534.
[19]   Lukiw W J . Circular rna (circrna) in alzheimer’s disease (ad). Frontiers in Genetics, 2013,4:307.
[20]   Mizushima N, Yoshimori T, Ohsumi Y . The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol, 2011,27:107-132.
[21]   李宜醒, 姚伟静, 易聪 . 细胞自噬研究进展. 中国细胞生物学学报, 2019,41(2):26-35.
[21]   Li Y X, Yao W J, Yi C . The research progress of autophagy. Chinese Journal of Cell Biology, 2019,41(2):26-35.
[22]   Bartel D P . Micrornas: target recognition and regulatory functions. Cell, 2009,136:215-233.
[23]   Filipowicz W, Bhattacharyya S N, Sonenberg N . Mechanisms of post-transcriptional regulation by micrornas: are the answers in sight? Nat Rev Genet, 2008,9:102-114.
[24]   John Clotaire D Z, Zhang B, Wei N , et al. miR-26b inhibits autophagy by targeting ULK2 in prostate cancer cells. Biochem Biophys Res Commun, 2016,472(1):194-200.
[25]   Wu H, Wang F, Hu S , et al. miR-20a and miR-106b negatively regulate autophagy induced by leucine deprivation via suppression of ULK1 expression in C2C12 myoblasts. Cell Signal, 2012,24(11):2179-2186.
[26]   Xu X H, Ding D F, Yong H J , et al. Resveratrol transcriptionally regulates miRNA-18a-5p expression ameliorating diabetic nephropathy via increasing autophagy. Eur Rev Med Pharmacol Sci, 2017,21(21):4952-4965.
[27]   Ye Z, Li Z H , He S Z. miRNA-1273g-3p involvement in development of diabetic retinopathy by modulating the autophagy-lysosome pathway. Med Sci Monit, 2017,23:5744-5751.
[28]   Ouimet M, Ediriweera H, Afonso M S , et al. microRNA-33 regulates macrophage autophagy in atherosclerosis. Arterioscler Thromb Vasc Biol, 2017,37(6):1058-1067.
[29]   Wang Z, Wang N, Liu P , et al. microRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin. Oncotarget, 2014,5(16):7013-7026.
[30]   Ju J A, Huang C T, Lan S H , et al. Characterization of a colorectal cancer migration and autophagy-related microRNA miR-338-5p and its target gene PIK3C3. Biomarkers and Genomic Medicine, 2013,5:74-78.
[31]   Comincini S, Allavena G, Palumbo S , et al. microRNA-17 regulates the expression of ATG7 and modulates the autophagy process, improving the sensitivity to temozolomide and low-dose ionizing radiation treatments in human glioblastoma cells. Cancer Biology & Therapy, 2013,14:574-586.
[32]   Wang P, Zhang J, Zhang L , et al. MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology, 2013,145:1133-1143.
[33]   Mukhopadhyay U, Chanda S, Patra U , et al. Synchronized orchestration of mir-99b and let-7g positively regulates rotavirus infection by modulating autophagy. Sci Rep, 2019,9(1):1318.
[34]   Duan X G, Zhang T, Ding S Q , et al. microRNA-17-5p modulates bacille Calmette-Guerin growth in RAW264.7 cells by targeting ULK1. PLoS One, 2015,10(9):e0138011.
[35]   Zeng Y, Huo G, Mo Y , et al. MIR137 regulates starvation-induced autophagy by targeting ATG7. J Mol Neurosci, 2015,56(4):815-821.
[36]   Xu N, Zhang J, Shen C , et al. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. Biochem Biophys Res Commun, 2012,423(4):826-831.
[37]   Wang Y, Luo J, Wang X , et al. MicroRNA-199a-5p induced autophagy and inhibits the pathogenesis of ankylosing spondylitis by modulating the mTOR signaling via directly targeting ras homolog enriched in brain (Rheb). Cell Physiol Biochem, 2017,42(6):2481-2491.
[38]   Ouimet M, Ediriweera H, Afonso M S , et al. microRNA-33 regulates macrophage autophagy in atherosclerosis. Arterioscler Thromb Vasc Biol, 2017,37(6):1058-1067.
[39]   Tian S, Guo X, Yu C , et al. miR-138-5p suppresses autophagy in pancreatic cancer by targeting SIRT1. Oncotarget, 2017,8(7):11071-11082.
[40]   Yang K, Yu B, Cheng C , et al. Mir505-3p regulates axonal development via inhibiting the autophagy pathway by targeting Atg12. Autophagy, 2017,13(10):1679-1696.
[41]   He J, Yu J J, Xu Q , et al. Downregulation of ATG14 by EGR1-MIR152 sensitizes ovarian cancer cells to cisplatin-induced apoptosis by inhibiting cyto-protective autophagy. Autophagy, 2015,11(2):373-384.
[42]   Chen J, Yu Y . MicroRNA-30a ameliorates hepatic fibrosis by inhibiting Beclin1-mediated autophagy. J Cell Mol Med, 2017,21(12):3679-3692.
[43]   Fu X T, Shi Y H, Zhou J , et al. MicroRNA-30a suppresses autophagy-mediated anoikis resistance and metastasis in hepatocellular carcinoma. Cancer Lett, 2018,412:108-117.
[44]   Liu L, Ren W, Chen K . MiR-34a promotes apoptosis and inhibits autophagy by targeting HMGB1 in acute myeloid leukemia cells. Cell Physiol Biochem, 2017,41(5):1981-1992.
[45]   Guo W, Wang H, Yang Y , et al. Down-regulated miR-23a contributes to the metastasis of cutaneous melanoma by promoting autophagy. Theranostics, 2017,7(8):2231-2249.
[46]   Han W, Fu X, Xie J , et al. MiR-26a enhances autophagy to protect against ethanol-induced acute liver injury. J Mol Med (Berl), 2015,93(9):1045-1055.
[47]   Li Y, Zhou D, Ren Y , et al. Mir223 restrains autophagy and promotes CNS inflammation by targeting ATG16L1. Autophagy, 2019,15(3):478-492.
[48]   Xiao Y, Diao Q, Liang Y , et al. MicroRNA-24-1-5p promotes malignant melanoma cell autophagy and apoptosis via regulating ubiquitin D. Mol Med Rep, 2017,16(6):8448-8454.
[49]   Li S, Qiang Q, Shan H , et al. MiR-20a and miR-20b negatively regulate autophagy by targeting RB1CC1/FIP200 in breast cancer cells. Life Sci, 2016,147:143-152.
[50]   Wang W, Liu J, Wu Q . MiR-205 suppresses autophagy and enhances radiosensitivity of prostate cancer cells by targeting TP53INP1. Eur Rev Med Pharmacol Sci, 2016,20(1):92-100.
[51]   Schmitz S U, Grote P, Herrmann B G . Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci, 2016,73:2491-2509.
[52]   Xu J, Xia Y, Zhang H , et al. Overexpression of long non-coding RNA H19 promotes invasion and autophagy via the PI3K/AKT/mTOR pathways in trophoblast cells. Biomed Pharmacother, 2018,101:691-697.
[53]   Yan W, Chen Z Y, Chen J Q , et al. LncRNA NEAT1 promotes autophagy in MPTP-induced Parkinson’s disease through stabilizing PINK1 protein. Biochem Biophys Res Commun, 2018,496(4):1019-1024.
[54]   Guo X, Xiao H, Guo S , et al. Long noncoding RNA HOTAIR knockdown inhibits autophagy and epithelial-mesenchymal transition through the Wnt signaling pathway in radioresistant human cervical cancer HeLa cells. J Cell Physiol, 2019,234(4):3478-3489.
[55]   Liu C, Zhang Y, She X , et al. A cytoplasmic long noncoding RNA LINC00470 as a new AKT activator to mediate glioblastoma cell autophagy. J Hematol Oncol, 2018,11(1):77.
[56]   Huang Z, Ye B, Wang Z , et al. Inhibition of LncRNA-HRIM increases cell viability by regulating autophagy levels during hypoxia/reoxygenation in myocytes. Cell Physiol Biochem, 2018,46(4):1341-1351.
[57]   Karreth F A ,Pandolfi P P.ceRNA cross-talk in cancer: when ce-bling rivalries go awry. Cancer Discov, 2013,3:1113-1121.
[58]   Wang K, Liu C Y, Zhou L Y . APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat Commun, 2015,6:6779.
[59]   Yin G, Yang X, Li Q , et al. GATA1 activated lncRNA (Galont) promotes anoxia/reoxygenation-induced autophagy and cell death in cardiomyocytes by sponging miR-338. J Cell Biochem, 2018,119(5):4161-4169.
[60]   Hu J, Zhang L, Mei Z , et al. Interaction of E3 ubiquitin ligase MARCH7 with long noncoding RNA MALAT1 and autophagy-related protein ATG7 promotes autophagy and invasion in ovarian cancer. Cell Physiol Biochem, 2018,47(2):654-666.
[61]   Yang L, Peng X, Jin H , et al. Long non-coding RNA PVT1 promotes autophagy as ceRNA to target ATG3 by sponging microRNA-365 in hepatocellular carcinoma. Gene, 2019,697:94-102.
[62]   Gu J, Wang Y, Wang X , et al. Effect of the lncrna gas5-mir-23a-atg3 axis in regulating autophagy in patients with breast cancer. Cell Physiol Biochem, 2018,48(1):194-207.
[63]   Zhao X, Su L, He X Y , et al. Long noncoding RNA CA7-4 promotes autophagy and apoptosis via sponging MIR877-3P and MIR5680 in high glucose-induced vascular endothelial cells. Autophagy, 2019: 1-16.
[64]   Qin Y, Sun W, Zhang H , et al. LncRNA GAS8-AS1 inhibits cell proliferation through ATG5-mediated autophagy in papillary thyroid cancer. Endocrine, 2018,59(3):555-564.
[65]   Xiu Y L, Sun K X, Chen X , et al. Upregulation of the lncRNA Meg3 induces autophagy to inhibit tumorigenesis and progression of epithelial ovarian carcinoma by regulating activity of ATG3. Oncotarget, 2017,8(19):31714-31725.
[66]   Zheng T, Li D, He Z , et al. Long noncoding RNA NBAT1 inhibits autophagy via suppression of ATG7 in non-small cell lung cancer. Am J Cancer Res, 2018,8(9):1801-1811.
[67]   Ma B, Yuan Z, Zhang L , et al. Long non-coding RNA AC023115.3 suppresses chemoresistance of glioblastoma by reducing autophagy. Biochim Biophys Acta Mol Cell Res, 2017,1864(8):1393-1404.
[68]   Yang L, Zhang X, Li H , et al. The long noncoding RNA HOTAIR activates autophagy by upregulating ATG3 and ATG7 in hepatocellular carcinoma. Mol Biosyst, 2016,12(8):2605-2612.
[69]   Huang S, Lu W, Ge D, Meng N , et al. A new microRNA signal pathway regulated by long noncoding RNA TGFB2-OT1 in autophagy and inflammation of vascular endothelial cells. Autophagy, 2015,11(12):2172-83.
[70]   Gao D, Lv A E, Li H P , et al. LncRNA MALAT-1 elevates HMGB1 to promote autophagy resulting in inhibition of tumor cell apoptosis in multiple myeloma. J Cell Biochem, 2017,118(10):3341-3348.
[71]   Deng X, Feng N, Zheng M , et al. PM2.5 exposure-induced autophagy is mediated by lncRNA loc146880 which also promotes the migration and invasion of lung cancer cells. Biochim Biophys Acta Gen Subj, 2017,1861(2):112-125.
[72]   Zhou L Y, Zhai M, Huang Y , et al. The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/ FAM65B pathway. Cell Death Differ, 2019,26(7):1299-1315.
[73]   Han B, Zhang Y, Zhang Y , et al. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy, 2018,14(7):1164-1184.
[74]   Li X, Diao H . Circular RNA circ 0001946 acts as a competing endogenous RNA to inhibit glioblastoma progression by modulating miR-671-5p and CDR1. J Cell Physiol, 2019,234(8):13807-13819.
[1] LI Xiao-jin,LI Yan-meng,LI Zhen-kun,XU An-jian,YANG Xiao-xi,HUANG Jian. The Mechanism of Copper Accumulation Induced Autophagy in Hepatocytes of ATP7B-deficient Mice Based on RNA-sequencing[J]. China Biotechnology, 2021, 41(9): 10-19.
[2] YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer[J]. China Biotechnology, 2021, 41(8): 59-66.
[3] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[4] CHEN Yu-qiong,TAN Wen-hua,LIU Hai-feng,CHEN Gen. Protective Effect of miR-29a on Lipopolysaccharide-induced Human Pulmonary Microvascular Endothelial Cells Injury by Targeting PTEN Expression[J]. China Biotechnology, 2021, 41(5): 8-16.
[5] CAI Run-ze,WANG Zheng-bo,CHEN Yong-chang. Research Progress of Mecp2 Affecting Metabolic Function in Rett Syndrome[J]. China Biotechnology, 2021, 41(2/3): 89-97.
[6] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[7] HAN Xue-yi,LI Yi-fan,LU Yue-da,XIONG Guo-liang,YU Chang-yuan. Preparation of Porphyrin Metal-organic Framework with Autophagy Inhibitory Effect and Its Photodynamic Cancer Treatment[J]. China Biotechnology, 2021, 41(11): 48-54.
[8] ZENG Xiang-Yi,PAN Jie. Progress on Autophagy Regulation of Browning of White Adipose Cells[J]. China Biotechnology, 2020, 40(6): 63-73.
[9] DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells[J]. China Biotechnology, 2020, 40(4): 69-77.
[10] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[11] Pan-hong ZHANG,Lian-lian LI,Xiu-mei ZHANG,Jia-jun CUI,Yin-jie JIANG. Advances in the Relationship Between microRNA and Chemotherapy Resistance of Lung Cancer[J]. China Biotechnology, 2019, 39(7): 79-84.
[12] Xiao-yan YANG,Jing-dong MAO,Shu-sen LI,Xin-ying ZHANG,Li-yin DU. Advances in Autophagy on the Regulation of Neutrophil Function[J]. China Biotechnology, 2019, 39(6): 84-90.
[13] Dan-tong HONG,Fan ZHANG,Shu-e WANG,Hong-xia WANG,Kun-mei LIU,Guang-xian XU,Zheng-hao HUO,Le GUO. miR-17-5p Targeting Autophagy Related Protein ATG7 Regulates Macrophages against Mycobacterium tuberculosis Infection[J]. China Biotechnology, 2019, 39(6): 1-8.
[14] Yan LIU,Peng DAI,Yun-feng ZHU. Research Progress of Relationship between Exosomes and Autophagosomes[J]. China Biotechnology, 2019, 39(6): 78-83.
[15] Lu WANG,Li-yuan YANG,Yu-ting TANG,Yao TAO,Li LEI,Yi-pei JING,Xue-ke JIANG,Ling ZHANG. Effects of PKM2 Knockdown on Proliferation and Apoptosis of Human Leukemia Cells and Its Potential Mechanism[J]. China Biotechnology, 2019, 39(3): 13-20.