Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (8): 25-31    DOI: 10.13523/j.cb.20190804
Orginal Article     
Enhanced Cyclic Adenosine Monophosphate Production by Coupling Addition of Low-Polyphosphate and Hypoxanthine
CHEN Bao-feng1,2,LI Zhi-gang1,2,ZHANG Zhong-hua2,CHANG Jing-ling1,2,**()
1 School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
2 Collaborative Innovation Center of Modem Biological Breeding of Henan Province, Xinxiang 453003, China
Download: HTML   PDF(1303KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In live cells, cyclic adenosine monophosphate (cAMP) was produced from ATP catalyzed by adenylate cyclase and continuous supply of energy and precursor substance was necessary for ATP biosynthesis. The addition of hypoxanthine improved cAMP productivity by 39.1% due to the activated purine salvage pathway when compared with control. However, fermentation ceased at 51h with low cAMP yield and cell concentrations caused by insufficient energy supply. When hypoxanthine and 2g/L-broth (NaPO3)6 were added collaboratively, cAMP concentration (7.24g/L) was improved by 125.5% and 93.5% respectively, compared with those with hypoxanthine and (NaPO3)6 addition individually. The fermentation process with hypoxanthine and (NaPO3)6 coupling addition combined the advantage of salvage pathway and low-polyphosphate which accelerated cAMP biosynthesis and accumulation.



Key wordsCyclic adenosine monophosphate      Hypoxanthine      Low-polyphosphate      Salvage pathway     
Received: 16 November 2018      Published: 18 September 2019
ZTFLH:  Q819  
Corresponding Authors: Jing-ling CHANG     E-mail: changjl001@126.com
Cite this article:

CHEN Bao-feng,LI Zhi-gang,ZHANG Zhong-hua,CHANG Jing-ling. Enhanced Cyclic Adenosine Monophosphate Production by Coupling Addition of Low-Polyphosphate and Hypoxanthine. China Biotechnology, 2019, 39(8): 25-31.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190804     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I8/25

低聚磷酸盐 添加量(g/L-broth) 添加时间(h)
0 18 30 42
Na5P3O10(3P) 1 1.72±0.03 1.87±0.05 1.95±0.06 1.79±0.05
2 1.80±0.03 2.21±0.06 2.32±0.06 2.04±0.06
3 1.88±0.04 2.10±0.03 2.37±0.03 2.02±0.04
(NaPO3)6(6P) 1 1.80±0.05 1.98±0.03 2.43±0.06 1.96±0.03
2 1.92±0.02 2.57±0.04 2.80±0.02 2.40±0.02
3 1.85±0.03 2.05±0.05 2.52±0.03 2.42±0.03
对照 0 1.73±0.02
Table 1 The effects of low-polyphosphates on cAMP production with different addition occasions and amounts
Fig.1 The effect of hypoxanthine addition amounts on cAMP biosynthesis
Fig.2 The time courses of cell, glucose hypoxanthine concentrations and specific rate during batch fermentations with or without hypoxanthine addition (a)■/□: OD600;●/○:Glucose concentrations (b) ▲/△:cAMP concentration;◆/◇:Hypoxanthine concentration Solid symbols: Control; Blank symbols: With 1g/L-broth hypoxanthine added at 26h and 37h, respectively (c),(d)——:Control;- - -:With 1g/L-broth hypoxanthine added at 26h and 37h, respectively
Fig.3 The time courses of cell, glucose hypoxanthine concentrations and specific rate during batch fermentations with (NaPO3)6 addition (a)■/□:OD600;●/○:Glucose concentrations ( b)▲/△:cAMP concentration;◆/◇:Hypoxanthine concentration Solid symbols:With 2g/L-broth (NaPO3)6 added at 24h; Blank symbols:With 2g/L-broth (NaPO3)6 added at 24h and 1g/L-broth hypoxanthine added at 26h, 37h and 46h, respectively ( c),(d)——: With 2g/L-broth (NaPO3)6 added at 24h; - - -:With 2g/L-broth (NaPO3)6 added at 24h and 1g/L-broth hypoxanthine added at 26h, 37h and 46h, respectively
发酵批次(#) 发酵时间(h) 最大OD600 葡萄糖消耗量(g/L) cAMP(g/L) 发酵强度[g/(L·h)]
对照 72 1.37 56 3.32 0.046
HX 51 1.23 46 3.21 0.063
24h 6p 60 1.62 55 3.74 0.062
24h 6p+HX 72 1.18 54 7.24 0.101
0h 6p 56 1.54 58 3.58 0.064
0h 6p+HX 67 1.34 53 6.32 0.094
Table 2 Performance comparison for different cAMP fermentation modes
Fig.4 The schematic diagram for cAMP biosynthesis with hypoxanthine and (NaPO3)6 coupling addition PRPP: Phosphoribosyl pyrophosphate; IMP: Inosinate; SAMP: Adenylosuccinic acid
[1]   Mcphee I, Gibson L, Kewney J , et al. Cyclic nucleotide signalling:a molecular approach to drug discovery for Alzheimer’s disease. Biochemical Society Transactions, 2005,33(6):1330-1332.
[2]   Liu Q, Wu C, Huang S Q , et al. Decreased hyperpolarization-activated cyclic nucleotide-gated channels are involved in bladder dysfunction associated with spinal cord injury. International Journal of Molecular Medicine, 2018,41(5):2609-2618.
[3]   Chen X C, Bai J X, Cao J M , et al. Medium optimization for the production of cyclic adenosine 3', 5'-monophosphate by Microbacterium sp. no.205 using response surface methodology. Bioresource Technology, 2009,100(2):919-924.
[4]   程丽娜, 陆海燕, 曲淑玲 , 等. 微生物发酵法生产环磷酸腺苷研究进展. 中国生物工程杂志, 2018,38(2):102-108.
[4]   Cheng L N, Lu H Y, Qu S L , et al. Production of cyclic adenosine monophosphate (cAMP) by microbial fermentation--a review. China Biotechnology, 2018,38(2):102-108.
[5]   Song H, Chen X C, Cao J M , et al. Directed breeding of an Arthrobacter mutant for high-yield production of cyclic adenosine monophophate by N + ion implantation . Radiation Physics and Chemistry, 2010,79(8):826-830.
doi: 10.1016/j.radphyschem.2010.03.005
[6]   杨威, 牛欢青, 陈晓春 , 等. 正十六烷对节杆菌发酵产环磷酸腺苷的影响. 生物加工过程, 2018,16(6):24-29.
[6]   Yang W, Niu H Q, Chen X C , et al. Effects of n-hexadecane on the biosynthesis of cyclic adenosine monophosphate by Arthrobacter sp.CGMCC 3584. Chinese Journal of Bioprocess Engineering, 2018,16(6):24-29.
[7]   Cao H, Nie K L, Li C C , et al. Rational design of substrate binding pockets in polyphosphate kinase for use in cost-effective ATP-dependent cascade reactions. Applied Microbiology and Biotechnology, 2017,101(13):5325-5332.
[8]   Achbergerova L, Nahalka J . Polyphosphate an ancient energy source and active metabolic regulator. Microbial Cell Factories, 2011,10(1):63-66.
[9]   Sato M, Masuda Y, Kirimura K . Thermostable ATP regeneration system using polyphosphate kinase from Thermosynechococcus elongatus BP-1 for D-amino acid dipeptide synthesis. Journal of Bioscience and Bioengineering, 2007,103(2):179-184.
[10]   Chandrashekhar K, Kassem I, Nislow C , et al. Transcriptome analysis of Campylobacter jejuni polyphosphate kinase (ppk1 and ppk2) mutants. Virulence, 2015,6(8):814-818.
[11]   Shimane M, Sugai Y, Kainuma R , et al. Mevalonate-dependent enzymatic synthesis of amorphadiene driven by an ATP-regeneration system using polyphosphate kinase. Bioscience Biotechnology and Biochemistry, 2012,76(8):1558-1560.
doi: 10.1271/bbb.120177
[12]   Yu L J, Wu J R, Liu J , et al. Enhanced curdlan production in Agrobacterium sp. ATCC 31749 by addition of low-polyphosphates. Biotechnology and Bioprocess Engineering, 2011,16(1):34-41.
doi: 10.1007/s12257-010-0145-5
[13]   Andexer R, Jennifer N, Richter M . Emerging enzymes for ATP regeneration in biocatalytic processes. Chembiochem, 2015,16(3):380-386.
[14]   Yao Y L, Xiong J, Chen Y . Enhanced adenosine triphosphate production by Saccharomyces cerevisiae using an efficient energy regeneration system. Korean Journal of Chemical Engineering, 2011,28(1):178-183.
doi: 10.1007/s11814-010-0331-3
[15]   Chen X C, Song H, Fang T , et al. Enhanced cyclic adenosine monophosphate production by Arthrobacter A302 through rational redistribution of metabolic flux. Bioresource Technology, 2010,101(9):3159-3163.
[16]   曹艳 . 利用代谢酶学和模型技术改善谷氨酸发酵的稳定性和糖酸转化率. 无锡:江南大学, 2014.
[16]   Cao Y . Enhancing glutamate fermentation stability and yield by techniques of metabolic enzymology and model. Wuxi:Jiangnan University, 2014.
[17]   Li L, Chen X C, Cheng J , et al. Bi-stage control of dissolved oxygen to enhance cyclic adenosine monophosphate production by Arthrobacter A302. Bioprocess and Biosystems Engineering, 2012,35(8):1281-1286.
doi: 10.1007/s00449-012-0715-3
[18]   Chen Y, Liu Q G, Chen X C , et al. Redirecting metabolic flux in Saccharomyces cerevisiae through regulation of cofactors in UMP production. Journal of Industrial Microbiology and Biotechnology, 2015,42(4):577-583.
[1] LI Zhi-gang,GU Yang,TAN Hai,ZHANG Zhong-hua,CHANG Jing-ling. Enhanced Cyclic Adenosine Monophosphate Fermentation Production by Aminophylline and Citrate Coupling Addition[J]. China Biotechnology, 2021, 41(7): 50-57.
[2] LI Zhi-gang,CHEN Bao-feng,ZHANG Zhong-hua,CHANG Jing-ling. The Physiological Mechanism for Enhanced Cyclic Adenosine Monophosphate Biosynthesis by Auxiliary Energy Substance[J]. China Biotechnology, 2020, 40(1-2): 102-108.