Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (7): 56-64    DOI: 10.13523/j.cb.20190708
    
Enhanced Biomass Production and Lipid Accumulation by Co-cultivation of Chlorella vulgaris with Azotobacter Mesorhizobium sp.
Zhi-jin WEI,Xiao LI,Hao-nan WANG,Yong-hao YIN,Li-jun XI,Bao-sheng GE()
Center for Bioengineering and Biotechnology,China University of Petroleum (East China),Qingdao 266580,China
Download: HTML   PDF(1046KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Microalgal oil is an important functional oil, but also one of the major sources for bio-diesel production. In order to solve the contradiction of algae growth and lipid accumulation, the Chlorella vulgaris were co-cultured with azotobacter at different initial ratio under nitrogen source deficiency conditions, and the impact of consortium system growth, lipid accumulation based on the dry weight, lipid content, and fatty acids composition in the incubation period were evaluated. The results showed that the biomass and lipid content of algae were significantly higher than that of the pure culture of axenic C.vulgaris when C. vulgaris and B2.3 strains were inoculated at the ratio of 70∶1. The biomass, lipid content, lipid productivity, neutral lipid content and neutral lipid productivity of algae in the co-cultures were 1.68g/L, 45.2%, 75.94mg/(L·d), 23.0% and 38.65mg/(L·d), respectively. And the biomass concentration and lipid content in the co-culture system were 66.3% and 47.7% higher than that of the axenic pure algal cultures, respectively. Furthermore, the consortium system significantly increased the proportion of C18∶1 fatty acids. It was indicated that the co-cultivation of algae-bacteria system can effectively contribute to the quality and quantity of microalgal bio-oil, and has great potential for production of bio-diesel.



Key wordsCo-culture      Chlorella vulgaris      Biomass      Lipid accumulation     
Received: 06 December 2018      Published: 05 August 2019
ZTFLH:  Q819  
Corresponding Authors: Bao-sheng GE     E-mail: gebaosheng@upc.edu.cn
Cite this article:

Zhi-jin WEI,Xiao LI,Hao-nan WANG,Yong-hao YIN,Li-jun XI,Bao-sheng GE. Enhanced Biomass Production and Lipid Accumulation by Co-cultivation of Chlorella vulgaris with Azotobacter Mesorhizobium sp.. China Biotechnology, 2019, 39(7): 56-64.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190708     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I7/56

Fig.1 The biomass and specific growth rate of C.vulgaris in co-culture with Mesorhizobium sp. after the 10d cultivation
Fig.2 The lipid content and productivity of C.vulgaris in co-culture with Mesorhizobium sp. after the 10d cultivation
Fig.3 The neutral lipid content and productivity of C.vulgaris in co-culture with Mesorhizobium sp.after the 10d cultivation
Fig.4 The fatty acid proportion of C.vulgaris in co-culture with Mesorhizobium sp. after the 10d cultivation
Fig.5 The protein concentration of in co-culture with Mesorhizobium sp. after the 10d cultivation
Fig.6 The polysaccharide concentration of C.vulgaris in co-culture with Mesorhizobium sp. after the 10d cultivation
[1]   Subashchandrabose S R, Ramakrishnan B, Megharaj M , et al. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnology Advances, 2011,29(6):896-907.
doi: 10.1016/j.biotechadv.2011.07.009
[2]   Wang S, Wang X, Tao H , et al. Heterotrophic culture of Chlorella pyrenoidosa using sucrose as the sole carbon source by co-culture with immobilized yeast. Bioresource Technology, 2018,249:425-430.
doi: 10.1016/j.biortech.2017.10.049
[3]   宋东辉, 侯李君, 施定基 . 生物柴油原料资源高油脂微藻的开发利用. 生物工程学报, 2008,24(3):341-348.
[3]   Song D H, Hou L J, Shi D J . Exploitation and utilization of rich lipids-microalgae, as new lipids feedstock for biodiesel production-a review. Chinese Journal of Biotechnology, 2008,24(3):341-348.
[4]   Brennan L, Owende P . Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 2010,14(2):557-577.
doi: 10.1016/j.rser.2009.10.009
[5]   Georgianna D R, Mayfield S P . Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 2012,488(7411):329-335.
[6]   Sayre R . Microalgae: the potential for carbon capture. Bioscience, 2010,60(9):722-727.
doi: 10.1525/bio.2010.60.9.9
[7]   Shu C, Tsai C, Chen K , et al. Enhancing high quality oil accumulation and carbon dioxide fixation by a mixed culture of Chlorella sp. and Saccharomyces cerevisiae. Journal of The Taiwan Institute of Chemical Engineers, 2013,44(6):936-942.
doi: 10.1016/j.jtice.2013.04.001
[8]   姜进举, 苗凤萍, 冯大伟 , 等. 微藻生物柴油技术的研究现状及展望. 中国生物工程杂志, 2010,30(2):134-140.
doi: Q945.11;TK6
[8]   Jiang J J, Miao F P, Feng D W , et al. Research situation and prospect of microalgae biodiesel. China Biotechnology, 2010,30(2):134-140.
doi: Q945.11;TK6
[9]   Dash A, Banerjee R . Enhanced biodiesel production through phyco-myco co-cultivation of Chlorella minutissima and Aspergillus awamori:an integrated approach. Bioresource Technology, 2017,238:502-509.
doi: 10.1016/j.biortech.2017.04.039
[10]   刘金丽, 王俊峰, 刘天中 , 等. 缺氮条件对栅藻油脂积累与光合作用的影响. 海洋科学, 2013,37(7):13-19.
[10]   Liu J L, Wang J F, Liu T Z , et al. The effects of nitrogen starvation on lipid accumulation and photosynthesis of Scenedesmus dimorphus. Marine Sciences, 2013,37(7):13-19.
[11]   左正三, 孙小曼, 任路静 , 等. 微藻生产油脂培养新技术. 中国生物工程杂志, 2018,38(7):102-109.
[11]   Zuo Z S, Sun X M, Ren L J , et al. Improvement of lipid accumulation in microalgae by novel cultivation strategies. China Biotechnology, 2018,38(7):102-109.
[12]   刘天中, 张维, 王俊峰 , 等. 微藻规模培养技术研究进展. 生命科学, 2014,26(5):509-522.
[12]   Liu T Z, Zhang W, Wang J F , et al. A review of mass cultivation technology for microalgae. Chinese Bulletin of Life Sciences, 2014,26(5):509-522.
[13]   Wang R, Tian Y, Xue S , et al. Enhanced microalgal biomass and lipid production via co‐culture of Scenedesmus obliquus and Candida tropicalis in an autotrophic system. Journal of Chemical Technology and Biotechnology, 2016,91(5):1387-1396.
doi: 10.1002/jctb.2016.91.issue-5
[14]   Ramanan R, Kim B H, Cho D H , et al. Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnology Advances, 2016,34(1):14-29.
doi: 10.1016/j.biotechadv.2015.12.003
[15]   Yang L, Tan X, Li D , et al. Nutrients removal and lipids production by Chlorella pyrenoidosa cultivation using anaerobic digested starch wastewater and alcohol wastewater. Bioresource Technology, 2015,181:54-61.
doi: 10.1016/j.biortech.2015.01.043
[16]   Guan S, Chen W, Wang E , et al. Mesorhizobium caraganae sp. nov, a novel rhizobial species nodulated with Caragana spp. in China. International Journal of Systematic and Evolutionary Microbiology, 2008,58(11):2646-2653.
doi: 10.1099/ijs.0.65829-0
[17]   Porra R J, Thompson W A, Kriedemann P E . Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimicaet Biophysica Acta (BBA) - Bioenergetics, 1989,975(3):384-394.
doi: 10.1016/S0005-2728(89)80347-0
[18]   Bligh E G, Dyer W J . A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 1959,37(8):911-917.
doi: 10.1139/y59-099
[19]   宋琪, 李泉, 邴欣 , 等. 尼罗红-荧光光谱法测定亚心形扁藻油脂含量. 中国油脂, 2016,41(10):98-101.
[19]   Song Q, Li Q, Bing X , et al. Determination of lipid content in Platymonas subcordiformis by Nile red-fluorescence spectrometry. China Oils and Fats, 2016,41(10):98-101.
[20]   Klock J H, Wieland A, Seifert R , et al. Extracellular polymeric substances (EPS) from cyanobacterial mats: characterisation and isolation method optimisation. Marine Biology, 2007,152(5):1077-1085.
doi: 10.1007/s00227-007-0754-5
[21]   Bradford M M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976,72(1-2):248-254.
doi: 10.1016/0003-2697(76)90527-3
[22]   Dubois M, Gilles K A, Hamilton J K , et al. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956,28(3):350-356.
doi: 10.1021/ac60111a017
[23]   Xu L, Cheng X, Wang Q . Enhanced lipid production in Chlamydomonas reinhardtii by co-culturing with Azotobacter chroococcum. Frontiers in Plant Science, 2018,9:741-753.
doi: 10.3389/fpls.2018.00741
[24]   Courchesne N M D, Parisien A, Wang B , et al. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Journal of Biotechnology, 2009,141(1-2):31-41.
doi: 10.1016/j.jbiotec.2009.02.018
[25]   Casadevall E, Dif D, Largeau C , et al. Studies on batch and continuous cultures of Botryococcus braunii: hydrocarbon production in relation to physiological state,cell ultrastructure,and phosphate nutrition. Biotechnology and Bioengineering, 1985,27(3):286-295.
doi: 10.1002/(ISSN)1097-0290
[26]   Papanikolaou S, Komaitis M , Aggelis G. single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresource Technology, 2004,95(3):287-291.
doi: 10.1016/j.biortech.2004.02.016
[27]   Yamaberi K, Takagi M, Yoshida T . Nitrogen depletion for intracellular triglyceride accumulation to enhance liquefaction yield of marine microalgal cells into a fuel oil. Journal of Marine Biotechnology, 1998,6:44-48.
[28]   Tang D, Han W, Li P , et al. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 2011,102(3):3071-3076.
doi: 10.1016/j.biortech.2010.10.047
[29]   Wang R, Xue S, Zhang D , et al. construction and characteristics of artificial consortia of Scenedesmus obliquus-bacteria for S.obliquus growth and lipid production. Algal Research, 2015,12:436-445.
doi: 10.1016/j.algal.2015.10.002
[30]   Gui M M, Lee K T, Bhatia S . feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy, 2008,33(11):1646-1653.
doi: 10.1016/j.energy.2008.06.002
[31]   Knothe G . will biodiesel derived from algal oils live up to its promise? A fuel property assessment. Lipid Technology, 2011,23(11):247-249.
doi: 10.1002/lite.v23.11
[32]   Munoz R, Kollner C, Guieysse B . biofilm photobioreactors for the treatment of industrial wastewaters. Journal of Hazardous Materials, 2009,161(1):29-34.
doi: 10.1016/j.jhazmat.2008.03.018
[33]   Gardes A, Iversen M H, Grossart H P , et al. diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. International Society for Microbial Ecology, 2011,5(3):436-445.
[1] Meng-tong QIN,Jing HU,Guan-hua LI. Recent Developments and Future Prospect of Biological Pretreatment[J]. China Biotechnology, 2018, 38(5): 85-91.
[2] YANG Kai, ZHAN Jing-ming, GAO Fen-fang, WU Bao-li, SU Li-xia, ZHOU Wen-ming, XUE Xiang-ming, HAO Jie, ZHAO Yang. Research of Chlorella on the Production of Biodiesel[J]. China Biotechnology, 2015, 35(11): 99-104.
[3] LI Xie-kun, ZHOU Wei-zheng, GUO Ying, WU Hao, XU Jing-liang, YUAN Zhen-hong. Research Progress on Bioethanol Production with Microalgae as Feedstocks[J]. China Biotechnology, 2014, 34(5): 92-99.
[4] LI Lan, WANG Ze-Jian, JIN Yong, SUN Wen-hua, ZHUANG Ying-ping, ZHANG Si-liang. Study on On-line Capacitance Measurement to Evaluate the Viable Biomass During the Fermentation of Pichia[J]. China Biotechnology, 2014, 34(3): 91-95.
[5] LIU Ai-jun, SHI Shou-kun, LI Lan, WANG Ping, WANG Wei, JIA Jun-qiao, WANG Ze-jian, LI Hai-dong, ZHUANG Ying-ping, ZHANG Si-liang. Studies on the Measurement of Viable Biomass in the Optimization of Rifamycins SV Fermentation Process[J]. China Biotechnology, 2014, 34(10): 73-78.
[6] WANG Gui-lin, GUI Xiao-hua, DENG Wei, ZHAO Zhi-liang, YAO Jie, YAN Yun-jun. Two Step Cultivation Mode with “Heterotrophy-stress” for Chlorella Protothecoides Biomass and Lipid Content[J]. China Biotechnology, 2013, 33(3): 99-104.
[7] LIU Hua-qing, LI Hao. Research Progress on Prevention and Controlling of Bacterial Contamination in Biomass Fermentation[J]. China Biotechnology, 2013, 33(12): 114-120.
[8] ZHANG Xiao-mei, FANG Liao-qiong, WANG Zhi-biao. Influence of Mouse Embryonic Stem Cells on Melanoma Cells in vitro[J]. China Biotechnology, 2012, 32(6): 7-12.
[9] YANG Qiu-ling, JI Jing, WANG Gang, WU Wei-dan, HUO Pei. Traits Analysis of Maize with the Psy and Lycb[J]. China Biotechnology, 2012, 32(12): 52-58.
[10] HU Wen-jun, LUO Wei, LI Han-guang, GU Qiu-ya, YU Xiao-bin. Study on Screening and Identification of Oleaginous Microalgae and Its Oil-producing Charateristic[J]. China Biotechnology, 2012, 32(12): 66-72.
[11] YANG Qi, WANG Ke-rong, KONG Wei-bao, YANG Hong, CAO Hai, ZHANG Xin-yun. Optimization of the Mixotrophic Culture Medium Composition for Biomass Production by Chlorella vulgaris Using Response Surface Methodology[J]. China Biotechnology, 2012, 32(09): 70-75.
[12] XU Yong, WANG Xun, ZHU Jun-jun, YONG Qiang, YU Shi-yuan. A New Way for Bioconversion of Xylose in High Efficiency[J]. China Biotechnology, 2012, 32(05): 113-119.
[13] GUO Yong-an, TENG Ya-qun, ZHU Ouhaodi, DAU Yi-chen, ZHA Jing-jing, ZHU Xu, ZENG Xiao, XING Xiao-xue, Mitchell Bieniek, Garrett Flack, LV Ji-hua. Study on the Ability of Butanol Production of Different Bacteria with the Fermentable Sugar[J]. China Biotechnology, 2012, 32(03): 91-99.
[14] FENG Di-na, AI Jiang-ning, LIU Ya-nan, CHEN Zhao-an, XUE Song, ZHANG Wei. Effects of Nitrogen-containing Media on the Accumulation of Lipid and Carbohydrate in Marine Microalgae Isochrysis zhanjiangensis[J]. China Biotechnology, 2011, 31(10): 29-34.
[15] LI Tao, LI Ai-fen, SANG Min, WU Hong, YIN Shun-ji, ZHANG Cheng-wu. Screening Oleaginous Microalgae and Evaluation of the Oil-producing Charateristic[J]. China Biotechnology, 2011, 31(04): 98-105.