Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (6): 84-90    DOI: 10.13523/j.cb.20190612
    
Advances in Autophagy on the Regulation of Neutrophil Function
Xiao-yan YANG,Jing-dong MAO,Shu-sen LI,Xin-ying ZHANG,Li-yin DU()
College of Animal Science and Technology,Inner Mongolia University for Nationalities,Tongliao 028000,China
Download: HTML   PDF(436KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Autophagy is an evolutionarily highly conserved intracellular degradation system designed to maintain cellular homeostasis in response to cellular stress. In physiological states, the level of autophagy is usually low; however, it is significantly upregulated under oxidative stress, nutritional starvation, and various pathogens. Many studies in the past have shown that autophagy plays an important role in the regulation of various histiocytes and physiological functions. Early studies have found a link between autophagy and neutrophil death, a necessary process closely related to inflammation. Autophagy plays a crucial role in neutrophil-driven inflammation and defense against pathogens in human and mouse models. Autophagy is essential for neutrophil differentiation and major functions, including degranulation, reactive oxygen species production, and release of neutrophil extracellular trapping nets. The role of autophagy in neutrophils, from neutrophils to inflammatory responses and NETosis cell death in the bone marrow were focused.



Key wordsAutophagy      Neutrophils      Granulocyte production      Phagocytosis      Degranulation      Neutrophil extracellular trapping network     
Received: 15 October 2018      Published: 12 July 2019
ZTFLH:  Q813  
Corresponding Authors: Li-yin DU     E-mail: dly2000@aliyun.com
Cite this article:

Xiao-yan YANG,Jing-dong MAO,Shu-sen LI,Xin-ying ZHANG,Li-yin DU. Advances in Autophagy on the Regulation of Neutrophil Function. China Biotechnology, 2019, 39(6): 84-90.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190612     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I6/84

[1]   Sil P, Muse G, Martinez J . A ravenous defense: canonical and non-canonical autophagy in immunity. Curr Opin Immunol, 2018,50:21-31.
doi: 10.1016/j.coi.2017.10.004
[2]   Galluzzi L, Vitale I, Aaronson S A , et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ, 2018,25(3):486-541.
[3]   Martinez J, Cunha L D, Park S , et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature, 2016,533(7601):115-119.
[4]   Mayadas T N, Cullere X, Lowell C A . The multifaceted functions of neutrophils. Annu Rev Pathol, 2014,9:181-218.
doi: 10.1146/annurev-pathol-020712-164023
[5]   Cowland J B, Borregaard N . Granulopoiesis and granules of human neutrophils. Immunol Rev, 2016,273(1):11-28.
doi: 10.1111/imr.2016.273.issue-1
[6]   Manz M G, Boettcher S . Emergency granulopoiesis. Nat Rev Immunol, 2014,14(5):302-314.
doi: 10.1038/nri3660
[7]   Tamassia N, Bianchetto-Aguilera F, Arruda-Silva F , et al. Cytokine production by human neutrophils: revisiting the “dark side of the moon. ” Eur J Clin Invest, 2018: 48(suppl2):e12952.
doi: 10.1111/eci.12952
[8]   Jablonska J, Granot Z . Neutrophil, quo vadis. J Leukoc Biol, 2017,102(3):685-688.
doi: 10.1189/jlb.3MR0117-015R
[9]   Mitsios A, Arampatzioglou A, Arelaki S , et al. NETopathies? Unraveling the dark side of old diseases through neutrophils. Front Immunol, 2016,7:678.
[10]   Egan D F, Shackelford D B, Mihaylova M M , et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science, 2011,331(6016):456-461.
doi: 10.1126/science.1196371
[11]   Ohsumi Y . Historical landmarks of autophagy research. Cell Res, 2014,24(1):9-23.
[12]   Bento C F . Mammalian autophagy: how does it work. Annu Rev Biochem, 2016,85:685-713.
doi: 10.1146/annurev-biochem-060815-014556
[13]   Birgisdottir Å B, Lamark T, Johansen T . The LIR motif-crucial for selective autophagy. Cell Sci, 2013,126(15):3237-3247.
[14]   Lee J W, Park S, Takahashi Y , et al. The association of AMPK with ULK1 regulates autophagy. PLoS One, 2010,5(11):e15394.
doi: 10.1371/journal.pone.0015394
[15]   Zhang D . AMPK regulates autophagy by phosphorylating BECN1 at threonine. Autophagy, 2016,12(9):1447-1459.
doi: 10.1080/15548627.2016.1185576
[16]   García-Prat L, Sousa-Victor P, Muñoz-Cánoves P . Proteostatic and metabolic control of stemness. Cell Stem Cell, 2017,20(5):593-608.
doi: 10.1016/j.stem.2017.04.011
[17]   Warr M R, Binnewies M, Flach J , et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature, 2013,494(7437):323-327.
[18]   Jin G, Xu C, Zhang X , et al. Atad3a suppresses Pink1-dependent mitophagy to maintain homeostasis of hematopoietic progenitor cells. Nat Immunol, 2018,19(1):29-40.
doi: 10.1038/s41590-017-0002-1
[19]   Ho T T. Warr M R Adelman E R , et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature, 2017,543(7644):205-210.
[20]   Riffelmacher T, Clarke A, Richter F C , et al. Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation. Immunity, 2017,47(3):466-480.
doi: 10.1016/j.immuni.2017.08.005
[21]   Sidaway P . Neutrophil differentiation is autophagy dependent. Nat Rev Immunol, 2017, 27:17(11).
[22]   Huang Y, Tan P, Wang X , et al. Transcriptomic insights into temporal expression pattern of autophagy genes during monocytic and granulocytic differentiation. Autophagy, 2018,14(3):558-559.
doi: 10.1080/15548627.2018.1425060
[23]   Martinez J, Malireddi R K, Lu Q , et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol, 2015,17(7):893-906.
[24]   Kimmey J M, Huynh J P, Weiss L A , et al. Unique role for ATG5 in neutrophil-mediated immunopathology during tuberculosis infection. Nature, 2015,528(7583):565-569.
[25]   Rinchai D, Riyapa D, Buddhisa S , et al. Macroautophagy is essential for killing of intracellular Burkholderia pseudomallei in human neutrophils. Autophagy, 2015,11(5):748-755.
doi: 10.1080/15548627.2015.1040969
[26]   Ullah I, Ritchie N D, Evans T J . The interrelationship between phagocytosis, autophagy and formation of neutrophil extracellular traps following infection of human neutrophils by Streptococcus pneumoniae. Innate Immun, 2017,23(5):413-423.
doi: 10.1177/1753425917704299
[27]   Yin C, Heit B . Armed for destruction: formation, function and trafficking of neutrophil granules. Cell Tissue Res, 2018,371(3):455-471.
doi: 10.1007/s00441-017-2731-8
[28]   Metzler K D, Goosmann C, Lubojemska A , et al. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep, 2014,8(3):883-896.
doi: 10.1016/j.celrep.2014.06.044
[29]   Bhattacharya A, Wei Q, Shin J N , et al. Autophagy is required for neutrophil-mediated inflammation. Cell Rep, 2015,12(11):1731-1739.
doi: 10.1016/j.celrep.2015.08.019
[30]   Brinkmann V, Reichard U, Goosmann C . Neutrophil extracellular traps kill bacteria. Science, 2004,303(5663):1532-1535.
doi: 10.1126/science.1092385
[31]   Jorch S K, Kubes P . An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med, 2017,23(3):279-287.
[32]   Sollberger G, Tilley D O, Zychlinsky A . Neutrophil extracellular traps: the biology of chromatin externalization. Dev Cell, 2018,44(5):542-553.
doi: 10.1016/j.devcel.2018.01.019
[33]   Apostolidou E, Skendros P, Kambas K , et al. Neutrophil extracellular traps regulate IL-1β-mediated inflammation in familial Mediterranean fever. Ann Rheum Dis, 2016,75(1):269-277.
doi: 10.1136/annrheumdis-2014-205958
[34]   Skendros P, Chrysanthopoulou A, Rousset F , et al. Regulated in development and DNA damage responses 1 (REDD1) links stress with IL-1β-mediated familial Mediterranean fever attack through autophagy-driven neutrophil extracellular traps. Allergy Clin Immunol, 2017,140(5):1378-1387.
doi: 10.1016/j.jaci.2017.02.021
[35]   Angelidou I, Chrysanthopoulou A, Mitsios A , et al. REDD1/Autophagy pathway is associated with Neutrophil driven IL-1β inflammatory response in active ulcerative colitis. J Immunol, 2018,200(12):3950-3961.
doi: 10.4049/jimmunol.1701643
[36]   Tang S, Zhang Y, Yin S W , et al. Neutrophil extracellular trap formation is associated with autophagy-related signalling in ANCA associated vasculitis. Clin Exp Immunol, 2015,180(3):408-418.
doi: 10.1111/cei.12589
[37]   Lood C, Blanco L P, Purmalek M M , et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med, 2016,22(2):146-153.
[38]   Papayannopoulos V . Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol, 2018,18(2):134-147.
[39]   Remijsen Q, Vanden Berghe T, Wirawan E , et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res, 2011,21(2):290-304.
[40]   Itakura A, McCarty O J . Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy. Am J Physiol Cell Physiol, 2013,305(3):C348-C354.
doi: 10.1152/ajpcell.00108.2013
[41]   Xu F, Zhang C, Zou Z , et al. Aging related Atg5 defect impairs neutrophil extracellular traps formation. Immunology, 2017,151(4):417-432.
doi: 10.1111/imm.2017.151.issue-4
[42]   Hazeldine J, Harris P, Chapple I L , et al. Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals. Aging Cell, 2014,13(4):690-698.
doi: 10.1111/acel.12222
[43]   Vieira da Silva Pellegrina D, Severino P, Vieira Barbeiro H , et al. Septic shock in advanced age: transcriptome analysis reveals altered molecular signatures in neutrophil granulocytes. PLoS One, 2015,10(6):e0128341.
doi: 10.1371/journal.pone.0128341
[44]   Ma R, Li T, Cao M , et al. Extracellular DNA traps released by acute promyelocytic leukemia cells through autophagy. Cell Death Dis, 2016,7(6):e2283.
[45]   Teimourian S, Moghanloo E . Role of PTEN in neutrophil extracellular trap formation. Mol Immunol, 2015,66(2):319-324.
doi: 10.1016/j.molimm.2015.03.251
[46]   Germic N, Stojkov D, Oberson K , et al. Neither eosinophils nor neutrophils require ATG5-dependent autophagy for extracellular DNA trap formation. Immunology, 2017,152(3):517-525.
doi: 10.1111/imm.2017.152.issue-3
[47]   Pieterse E, Rother N, Yanginlar C , et al. Neutrophils discriminate between lipopolysaccharides of different bacterial sources and selectively release neutrophil extracellular traps. Front Immunol, 2016,7:484.
[48]   Bendorius M, Neeli I, Wang F . The mitochondrion-lysosome axis in adaptive and innate immunity: effect of lupus regulator peptide P140 on mitochondria autophagy and NETosis. Front Immunol, 2018,9:2158.
doi: 10.3389/fimmu.2018.02158
[49]   Angelidou I, Chrysanthopoulou A, Mitsios A . REDD1/autophagy pathway is associated with neutrophil driven IL-βinflammatory response in active ulcerative colitis. Immunol, 2018,200(12):3950-3961.
doi: 10.4049/jimmunol.1701643
[1] LI Xiao-jin,LI Yan-meng,LI Zhen-kun,XU An-jian,YANG Xiao-xi,HUANG Jian. The Mechanism of Copper Accumulation Induced Autophagy in Hepatocytes of ATP7B-deficient Mice Based on RNA-sequencing[J]. China Biotechnology, 2021, 41(9): 10-19.
[2] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[3] CAI Run-ze,WANG Zheng-bo,CHEN Yong-chang. Research Progress of Mecp2 Affecting Metabolic Function in Rett Syndrome[J]. China Biotechnology, 2021, 41(2/3): 89-97.
[4] HAN Xue-yi,LI Yi-fan,LU Yue-da,XIONG Guo-liang,YU Chang-yuan. Preparation of Porphyrin Metal-organic Framework with Autophagy Inhibitory Effect and Its Photodynamic Cancer Treatment[J]. China Biotechnology, 2021, 41(11): 48-54.
[5] ZENG Xiang-Yi,PAN Jie. Progress on Autophagy Regulation of Browning of White Adipose Cells[J]. China Biotechnology, 2020, 40(6): 63-73.
[6] DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells[J]. China Biotechnology, 2020, 40(4): 69-77.
[7] ZHANG Yan-ting,GUO Yu-feng,YANG Zhi-hong,YANG Shao-qi. The Expression and Clinical Significance of CD177 + Neutrophils in Patients with Ulcerative Colitis[J]. China Biotechnology, 2019, 39(9): 58-61.
[8] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[9] Dan-tong HONG,Fan ZHANG,Shu-e WANG,Hong-xia WANG,Kun-mei LIU,Guang-xian XU,Zheng-hao HUO,Le GUO. miR-17-5p Targeting Autophagy Related Protein ATG7 Regulates Macrophages against Mycobacterium tuberculosis Infection[J]. China Biotechnology, 2019, 39(6): 1-8.
[10] Yan LIU,Peng DAI,Yun-feng ZHU. Research Progress of Relationship between Exosomes and Autophagosomes[J]. China Biotechnology, 2019, 39(6): 78-83.
[11] Lu WANG,Li-yuan YANG,Yu-ting TANG,Yao TAO,Li LEI,Yi-pei JING,Xue-ke JIANG,Ling ZHANG. Effects of PKM2 Knockdown on Proliferation and Apoptosis of Human Leukemia Cells and Its Potential Mechanism[J]. China Biotechnology, 2019, 39(3): 13-20.
[12] SHEN Bing-lei,WANG Yu-xuan,HAN Shuo,LI Xi,YANG Zhuo-ni-na,ZOU Zi-wen,LIU Juan. Research Progress of Non-coding RNA in Autophagy[J]. China Biotechnology, 2019, 39(12): 56-63.
[13] ZHAN Hui-lu,BAI Ying,ZHUANG Yan,MENG Juan,ZHAO Hai-yang. Research Progress of Autophagy Induced Protection by Nanomaterials[J]. China Biotechnology, 2019, 39(12): 64-72.
[14] LI Sheng. The Induction Effect of Metal Ions for Cell Autophagy[J]. China Biotechnology, 2017, 37(7): 124-132.
[15] ZHAO Yuan-bo, HONGDu Bei-qi, CHEN Ying-yu. Establishment of p62/SQSTM1-luciferase Based Method for Cellular Autophagic Flux Determination[J]. China Biotechnology, 2016, 36(1): 55-62.